Spontaneous B − L Breaking as the Origin of the Hot Early Universe Valerie Domcke DESY, Hamburg, Germany in collaboration with W. Buchm¨ uller, K. Schmitz, K. Kamada arxiv[hep-ph]: 1202.6679, 1203.0285, 1305.3392
Spontaneous B − L Breaking as the Origin of the Hot Early Universe Valerie Domcke DESY, Hamburg, Germany in collaboration with W. Buchm¨ uller, K. Schmitz, K. Kamada arxiv[hep-ph]: 1202.6679, 1203.0285, 1305.3392
Spontaneous B − L Breaking as the Origin of the Hot Early Universe Valerie Domcke DESY, Hamburg, Germany in collaboration with W. Buchm¨ uller, K. Schmitz, K. Kamada arxiv[hep-ph]: 1202.6679, 1203.0285, 1305.3392
Vanilla Cosmology? Motivation time 105 y 1010 y < 1 s 3 min formation of ? light elements today LHC cosmic microwave energy [eV] background 10 27 10 24 10 21 10 18 10 15 10 12 10 9 10 6 10 3 10 0 10 � 3 10 � 6 Valerie Domcke — DESY — 19.07.2013 — Page 2
Motivation Motivation entropy inflation production matter - dark matter antimatter asymmetry Valerie Domcke — DESY — 19.07.2013 — Page 3
Motivation Motivation entropy inflation production spontaneous breaking of U (1) B − L matter - dark matter antimatter asymmetry Valerie Domcke — DESY — 19.07.2013 — Page 3
Inflation Motivation scalar potential exponential expansion driven by slowly rolling scalar field inflaton field ‘stretched’ quantum fluctuations → inhomogeneities of the cosmic microwave background more a paradigm than a model [Planck ’13] Valerie Domcke — DESY — 19.07.2013 — Page 4
Entropy Production Motivation Expanding, cooling universe: Hot thermal plasma as initial state Reheating: generation of the thermal bath through decay of heavy particles perturbative process Preheating: rapid, nonperturbative process scalar potential tachyonic preheating: triggered by tachyonic instability, exponential growth of low momentum modes [Felder et al. ’01] Higgs field large abundance of non-relativistic Higgs bosons, small abundances of particles coupled to it [Garcia-Bellido et al. ’02] Valerie Domcke — DESY — 19.07.2013 — Page 5
Matter and Dark Matter Motivation Matter-Antimatter asymmetry small, but very significant B − L asymmetry: n B − n ¯ = (6 . 19 ± 0 . 15) · 10 − 10 B [Komatsu et al ’10] n γ leptogenesis: generate matter asymmetry dynamically in lepton sector, typically via decay of heavy Majorana neutrino transfer to baryon sector via SM processes ( ✘✘ B + L Sphalerons) ✘ Dark matter ... see earlier talks here: gravitino or neutralino dark matter Valerie Domcke — DESY — 19.07.2013 — Page 6
Adding U (1) B − L to the SM gauge group Motivation ... see also Shaaban Khalil’s talk top-down approach: U (1) B − L as part of GUT group bottom-up approach: ’accidental’ global symmetry of the SM → gauge symmetry possible after introduction of right-handed neutrinos for anomaly cancellation spontaneously broken at GUT scale l a r i a t n l d a e l c t e s o fi p s g g i H Higgs field Valerie Domcke — DESY — 19.07.2013 — Page 7
Outline Motivation Towards a Consistent Cosmological Picture: Spontaneous B − L Breaking qualitative picture: linking inflation, leptogenesis and dark matter quantitative description: the reheating process in terms of Boltzmann equations Phenomenology Conclusion Valerie Domcke — DESY — 19.07.2013 — Page 8
A Phase Transition in the Early Universe Spontaneous B − L Breaking d d l l e e fi fi s s g g g g i i H Higgs field H Higgs field √ λ B − L − 2 S 1 S 2 ) + 1 2 Φ ( v 2 2 h n i n c i n c i S 1 + h ν ij n c W = √ j H u + W MSSM i 5 ∗ Before After Phase transition hybrid inflation reheating tachyonic preheating [Dvali et al. ’94] leptogenesis cosmic strings dark matter Valerie Domcke — DESY — 19.07.2013 — Page 9
A Phase Transition in the Early Universe Spontaneous B − L Breaking d d l l e e fi fi s s g g g g i inflaton field i H Higgs field H Higgs field d l e fi s √ g g H i λ B − L − 2 S 1 S 2 ) + 1 2 Φ ( v 2 2 h n i n c i n c i S 1 + h ν ij n c W = √ j H u + W MSSM i 5 ∗ Before After Phase transition hybrid inflation reheating tachyonic preheating [Dvali et al. ’94] leptogenesis cosmic strings dark matter Valerie Domcke — DESY — 19.07.2013 — Page 9
A Phase Transition in the Early Universe Spontaneous B − L Breaking d d l l e e fi fi s s g g g g i inflaton field i H Higgs field H Higgs field d l e fi s √ g g H i λ B − L − 2 S 1 S 2 ) + 1 2 Φ ( v 2 2 h n i n c i n c i S 1 + h ν ij n c W = √ j H u + W MSSM i 5 ∗ Before After Phase transition hybrid inflation reheating tachyonic preheating [Dvali et al. ’94] leptogenesis cosmic strings dark matter Valerie Domcke — DESY — 19.07.2013 — Page 9
A Phase Transition in the Early Universe Spontaneous B − L Breaking d d l l e e fi fi s s g g g g i inflaton field i H Higgs field H Higgs field d l e fi s √ g g H i λ B − L − 2 S 1 S 2 ) + 1 2 Φ ( v 2 2 h n i n c i n c i S 1 + h ν ij n c W = √ j H u + W MSSM i 5 ∗ Before After Phase transition hybrid inflation reheating tachyonic preheating [Dvali et al. ’94] leptogenesis cosmic strings dark matter Valerie Domcke — DESY — 19.07.2013 — Page 9
A Phase Transition in the Early Universe Spontaneous B − L Breaking d d l l e e fi fi s s g g g g i inflaton field i H Higgs field H Higgs field d l e fi s √ g g H i λ B − L − 2 S 1 S 2 ) + 1 2 Φ ( v 2 2 h n i n c i n c i S 1 + h ν ij n c W = √ j H u + W MSSM i 5 ∗ Before After Phase transition hybrid inflation reheating tachyonic preheating [Dvali et al. ’94] leptogenesis cosmic strings dark matter Valerie Domcke — DESY — 19.07.2013 — Page 9
A Phase Transition in the Early Universe Spontaneous B − L Breaking d d l l e e fi fi s s g g g g i inflaton field i H Higgs field H Higgs field d l e fi s g g H i √ B − L − 2 S 1 S 2 ) + 1 λ 2 Φ ( v 2 2 h n i n c i n c i S 1 + h ν ij n c W = √ i 5 ∗ j H u + W MSSM SSB of B − L links inflation, (p)reheating, leptogenesis and DM Valerie Domcke — DESY — 19.07.2013 — Page 9
A Useful Tool: Boltzmann Equations Spontaneous B − L Breaking evolution of the phase space density f X ( t, p ) : � ∂ ∂t − ˙ � a a p ∂ ˆ � L f X ( t, p ) = f X ( t, p ) = C X ∂p collision operator: C X ( Xab.. ↔ ij.. ) = 1 � d Π( X | a, b, .. ; i, j, .. )(2 π ) 4 δ (4) ( P out − P in ) 2 g X E X × [ f i f j .. |M ( ij.. → Xab.. ) | 2 − f X f a f b .. |M ( Xab.. → ij.. ) | 2 ] � ˙ � 2 = ρ tot Friedmann equation: 3 M 2 a P a Calculating the time evolution of phase space densities Valerie Domcke — DESY — 19.07.2013 — Page 10
A Useful Tool: Boltzmann Equations Spontaneous B − L Breaking evolution of the phase space density f X ( t, p ) : � ∂ ∂t − ˙ � a a p ∂ ˆ � L f X ( t, p ) = f X ( t, p ) = C X ∂p collision operator: C X ( Xab.. ↔ ij.. ) = 1 � d Π( X | a, b, .. ; i, j, .. )(2 π ) 4 δ (4) ( P out − P in ) 2 g X E X × [ f i f j .. |M ( ij.. → Xab.. ) | 2 − f X f a f b .. |M ( Xab.. → ij.. ) | 2 ] � ˙ � 2 = ρ tot Friedmann equation: 3 M 2 a P a Calculating the time evolution of phase space densities Valerie Domcke — DESY — 19.07.2013 — Page 10
A Useful Tool: Boltzmann Equations Spontaneous B − L Breaking evolution of the phase space density f X ( t, p ) : � ∂ ∂t − ˙ � a a p ∂ ˆ � L f X ( t, p ) = f X ( t, p ) = C X ∂p collision operator: C X ( Xab.. ↔ ij.. ) = 1 � d Π( X | a, b, .. ; i, j, .. )(2 π ) 4 δ (4) ( P out − P in ) 2 g X E X × [ f i f j .. |M ( ij.. → Xab.. ) | 2 − f X f a f b .. |M ( Xab.. → ij.. ) | 2 ] � ˙ � 2 = ρ tot Friedmann equation: 3 M 2 a P a Calculating the time evolution of phase space densities Valerie Domcke — DESY — 19.07.2013 — Page 10
A Useful Tool: Boltzmann Equations Spontaneous B − L Breaking evolution of the phase space density f X ( t, p ) : � ∂ ∂t − ˙ � a a p ∂ ˆ � L f X ( t, p ) = f X ( t, p ) = C X ∂p collision operator: C X ( Xab.. ↔ ij.. ) = 1 � d Π( X | a, b, .. ; i, j, .. )(2 π ) 4 δ (4) ( P out − P in ) 2 g X E X × [ f i f j .. |M ( ij.. → Xab.. ) | 2 − f X f a f b .. |M ( Xab.. → ij.. ) | 2 ] � ˙ � 2 = ρ tot Friedmann equation: 3 M 2 a P a Calculating the time evolution of phase space densities Valerie Domcke — DESY — 19.07.2013 — Page 10
Recommend
More recommend