axion as a dark matter
play

Axion as a Dark matter 20195513 Minsang Yu 1 Contents 1. - PowerPoint PPT Presentation

Axion as a Dark matter 20195513 Minsang Yu 1 Contents 1. Spontaneous Symmetry Breaking (SSB) U 1 A problem 2. 3. Strong CP problem 4. Axion Search 5. Summary 2 1. Spontaneous Symmetry Breaking (SSB) Consider a simple Lagrangian for


  1. Axion as a Dark matter 20195513 Minsang Yu 1

  2. Contents 1. Spontaneous Symmetry Breaking (SSB) U 1 A problem 2. 3. Strong CP problem 4. Axion Search 5. Summary 2

  3. 1. Spontaneous Symmetry Breaking (SSB) โ€ข Consider a simple Lagrangian for a (real) scalar field: โ„’ = 1 2 ๐œ– ๐œˆ ๐œš๐œ– ๐œˆ ๐œš โˆ’ ๐‘Š ๐œš โ€ข For a โ€symmetricโ€ potential: โ€œ Symmetric โ€ potential means: ๐‘Š โˆ’๐œš = ๐‘Š ๐œš 2 ๐œˆ 2 ๐œš 2 + ๐œ‡ 4 ๐‘Š ๐œš = โˆ’ 1 4 ๐œš 4 โ€ข Our goal: Take a look at the ground states! 3

  4. 1. Spontaneous Symmetry Breaking (SSB) โ€ข Here, It is known that : โ€œ constant configuration of scalar field such that minimizes the potential term also minimizes the kinetic term at the same time. โ€ ๐œ–๐‘Š ๐œ–๐ฟ ๐œš = ๐‘‘๐‘๐‘œ๐‘ก๐‘ข๐‘๐‘œ๐‘ข , ๐œ–๐œš = 0 ๐œ–๐œš = 0 4

  5. 1. Spontaneous Symmetry Breaking (SSB) โ€ข For simplicity, let โ€™ s consider only two potentials: ๐‘Š ๐œš = โˆ’ ๐Ÿ ๐Ÿ‘ ๐œš 2 + 1 ๐‘Š ๐œš = + ๐Ÿ ๐Ÿ‘ ๐œš 2 + 1 4 ๐œš 4 4 ๐œš 4 5

  6. 1. Spontaneous Symmetry Breaking (SSB) ๐œ–๐‘Š โ€ข constant field solutions for ๐œ–๐œš = 0 ๐‘Š ๐œš = โˆ’ ๐Ÿ ๐Ÿ‘ ๐œš 2 + 1 4 ๐œš 4 1. ฯ• = 0 โ€ข Question: Does the solution enjoys the same symmetry as the potential? Yes! 1. ฯ• = 0 = (โˆ’0) ๐œš = 0 6

  7. 1. Spontaneous Symmetry Breaking (SSB) ๐œ–๐‘Š โ€ข constant field solutions for ๐œ–๐œš = 0 ๐‘Š ๐œš = + ๐Ÿ ๐Ÿ‘ ๐œš 2 + 1 4 ๐œš 4 1. ฯ• = 0 2. ฯ• = +1 3. ฯ• = โˆ’1 โ€ข Question: Does the solution enjoys the same symmetry as the potential? ๐œš = 0 Yes! 1. ฯ• = 0 = (โˆ’0) No โ€ฆ 2. ฯ• = +1 โ‰  โˆ’(+1) ๐œš = 1 ๐œš = โˆ’1 No โ€ฆ 3. ฯ• = โˆ’1 โ‰  โˆ’(โˆ’1) Two solutions do not follow the symmetry of the potential 7

  8. 1. Spontaneous Symmetry Breaking (SSB) โ€ข For more intuition, letโ€™s consider some perturbations: ๐œš ๐‘ฆ = ๐œš 0 + ๐œ€๐œš(๐‘ฆ) derivative of constant is zero. โ„’ ๐œš = 1 ๐œ– ๐œˆ ๐œš 0 + ๐œ€๐œš ๐‘ฆ 2 ๐œ– ๐œˆ ๐œš 0 + ๐œ€๐œš ๐‘ฆ โˆ’ V ๐œš 0 + ๐œ€๐œš ๐‘ฆ โ†’ โ„’ ๐œš = 1 2 ๐œ– ๐œˆ ๐œ€๐œš๐œ– ๐œˆ ๐œ€๐œš + 1 2 โˆ’ 1 4 2 ๐œš 0 + ๐œ€๐œš ๐‘ฆ 4 ๐œš 0 + ๐œ€๐œš ๐‘ฆ 8

  9. 1. Spontaneous Symmetry Breaking (SSB) โ€ข For more intuition, let โ€™ s consider some perturbations: ๐œš ๐‘ฆ = ๐œš 0 + ๐œ€๐œš(๐‘ฆ) 2 โˆ’ 1 4 1 1 For ๐œš = 0 ๐œ€๐œš โ†’ โˆ’๐œ€๐œš 2 ๐œ– ๐œˆ ๐œ€๐œš๐œ– ๐œˆ ๐œ€๐œš + โ†’ โ„’ 0 = 2 ๐œ€๐œš ๐‘ฆ 4 ๐œ€๐œš ๐‘ฆ 2 โˆ’ 1 4 For ๐œš = ยฑ1 โ†’ โ„’ ยฑ1 = 1 1 ๐œ€๐œš โ†’ โˆ’๐œ€๐œš 2 ๐œ– ๐œˆ ๐œ€๐œš๐œ– ๐œˆ ๐œ€๐œš + 2 ยฑ1 + ๐œ€๐œš ๐‘ฆ 4 ยฑ1 + ๐œ€๐œš ๐‘ฆ โ€ข What governs the underlying physics is potential, and it has a symmetry. โ€ข What we see in our experience is small perturbations, and the symmetry is โ€œ broken โ€ . (or, โ€œ hidden โ€ . There IS always a symmetry, but we just don โ€™ t see it explicitly. ) 9

  10. 1. Spontaneous Symmetry Breaking (SSB) OK. We got SSB with a real scalar field. How about a complex scalar field? 10

  11. 1. Spontaneous Symmetry Breaking (SSB) Real scalar field Complex scalar field โ„’ = 1 โ„’ = 1 2 ๐œ– ๐œˆ ๐œš โˆ— ๐œ– ๐œˆ ๐œš โˆ’ ๐‘Š ๐œš 2 ๐œ– ๐œˆ ๐œš๐œ– ๐œˆ ๐œš โˆ’ ๐‘Š ๐œš 2 ๐œˆ 2 ๐œš 2 + ๐œ‡ 4 2 ๐œˆ 2 ๐œš 2 + ๐œ‡ 4 ๐‘Š ๐œš = โˆ’ 1 ๐‘Š ๐œš = โˆ’ 1 4 ๐œš 4 4 ๐œš 4 ๐œš โ†’ ๐œš๐‘“ ๐‘—๐œ„ ๐œš โ†’ โˆ’๐œš 11

  12. 1. Spontaneous Symmetry Breaking (SSB) 4 ๐œš 4 ( ๐œˆ 2 < 0 ) ๐œ‡ 4 1 2 ๐œˆ 2 ๐œš 2 + ๐‘Š ๐œš = โˆ’ Symmetric solution: Re ๐œš = 0, Im ๐œš = 0 Non-Symmetric solution: Re ๐œš = ๐œˆ ๐œ‡ , Im ๐œš = 0 Re ๐œš Q: If you also consider some perturbations here: Im ๐œš A1: sym. solution falls to non-sym. solution. A2: non-sym. solution climbs the valley, or spins around. A degree of freedom is equivalent to a new particle. Itโ€™s called a Goldstone boson . 12

  13. าง 1. Spontaneous Symmetry Breaking (SSB) โ€ข In strong interaction, เดค ๐‘’๐‘’ โ‰  0 , breaking the axial symmetry U 1 ๐ต . ๐‘ฃ๐‘ฃ , โ€ข Therefore, there should be a Goldstone boson related to the SSB. โ€ข There were two possibilities: 1. pion โ€œ eats โ€ the goldstone boson and gets a polarization. 2. or, another particle lighter than pion should exist. โ€ข โ€ฆ and none of them was observed. This is so called โ€˜ ๐• ๐Ÿ ๐‘ฉ problem โ€™ . 13

  14. 2. U 1 A problem โ€ข OK. Something is wrong. But where did we miss? โ€œ Maybe we used wrong boundary conditions on QCD vacuum. โ€ Gerard โ€˜t Hooft 14

  15. 2. U 1 A problem classical Quantum level โ€ข Baryonic current: ๐‘• 2 ๐‘๐œˆ๐œ‰ = ๐œ– ๐œˆ ๐ฟ ๐œˆ (from Ward-Takahashi identity) ๐œˆ = ๐œˆ = 0 ๐œˆ๐œ‰ ๐บ ๐œ– ๐œˆ ๐พ ๐ถ 32๐œŒ 2 ๐บ ๐œ– ๐œˆ ๐พ ๐ถ ๐‘ (Follows least action principle in average, but there are some offsets.) ๐‘• 2 โ€ข Quantum corrections on action: 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐œ– ๐œˆ ๐ฟ ๐œˆ ๐œ€๐‘‹ = ๐œˆ = 0 โ€ข Naรฏve boundary condition: ๐ต ๐‘ เถฑ ๐‘’ 4 ๐‘ฆ๐œ– ๐œˆ ๐ฟ ๐œˆ = 0 ๐œ€๐‘‹ = 0 (at spatial infinity) โ€ข โ€˜ t Hooft boundary condition: 0 ๐œˆ = แ‰Š เถฑ ๐‘’ 4 ๐‘ฆ๐œ– ๐œˆ ๐ฟ ๐œˆ โ‰  0 ๐ต ๐‘ ๐‘•๐‘๐‘ฃ๐‘•๐‘“ ๐‘ข๐‘ ๐‘๐‘œ๐‘ก๐‘”๐‘๐‘ ๐‘› ๐‘๐‘” 0 ๐œ€๐‘‹ โ‰  0 (at spatial infinity) 15

  16. 2. U 1 A problem โ€ข Actually, using โ€˜t Hooft B.C. : เถฑ ๐‘’ 4 ๐‘ฆ๐œ– ๐œˆ ๐ฟ ๐œˆ โˆ ๐‘‚ ๐‘—๐‘œ๐‘ข๐‘“๐‘•๐‘“๐‘  โ€ข It means that there are n-vacua with the same energy (=degenerated): (๐‘œ = 0) โ‡’ corresponding set ๐ต ๐œˆ 0 n-vacua (๐‘œ = 1) โ‡’ corresponding set ๐ต ๐œˆ 1 {|๐‘‚ = ๐‘œโŸฉ} โ€ฆ โ€ข Vacuum transition โ€ข Classical: no transition btw different vacuum: ๐‘œ ๐‘› = 0 โ€ข Quantum: transition is OK: ๐‘œ ๐‘› โ‰  0 16

  17. 2. U 1 A problem โ€ข Well, to bypass the โ€œtransition - ableโ€ vacuum, How aboutโ€ฆ ๐œ„ ๐œ„ โ€ฒ = 0. ๐‘“ โˆ’๐‘—๐‘œ๐œ„ |๐‘œโŸฉ ๐œ„ = เท ๐œ„: ๐‘”๐‘ ๐‘“๐‘“ ๐‘ž๐‘๐‘ ๐‘๐‘›๐‘“๐‘ข๐‘“๐‘  ๐‘ขโ„Ž๐‘“๐‘œ ๐‘œ โ€ข OK. Now letโ€™s see what happens to action ๐‘‡ in order to make ๐œ„ as the eigenstate of the โ„’ : ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + ๐œ„ ๐‘• 2 ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐บ ๐‘๐œˆ๐œ‰ ๐‘ 17

  18. 2. U 1 A problem โ€ข One last thing: โ€ข If we assume quark mass as real, we should get some proper coordinate. โ€ข Such coordinate can be obtained through chiral transformation: าง ๐œ„ = ๐œ„ + arg det ๐‘ ๐œ„ ๐‘• 2 ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + าง ๐บ ๐‘๐œˆ๐œ‰ ๐‘ a CP-violating term 18

  19. 2. U 1 A problem ๐œ„ ๐‘• 2 ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + าง ๐บ ๐‘๐œˆ๐œ‰ ๐‘ a CP-violating term โ€œ OK. Now we know why U 1 A problem happens. โ€ โ€œ It โ€™ s because of the CP violating term. Problem solved! โ€ โ€œ Now let โ€™ s go get าง ๐œ„ ! โ€ (As าง ๐œ„ is a free parameter, it lies somewhere on 0, 2๐œŒ .) 19

  20. 2. U 1 A problem ๐œ„ ~10 โˆ’10 (extremely small) ๐‘’ ๐‘œ ~5 โˆ™ 10 โˆ’16 เดฅ เดฅ ๐œ„ ๐‘“ โˆ™ ๐‘‘๐‘› โ‡’ 20

  21. 2. U 1 A problem โ€ข ๐œ„ is a free parameter in 0, 2๐œŒ . โ€ข So it โ€™ s totally OK for าง ๐œ„ being any value. ANY value. โ€ข But why ZERO?? โ€ข โ€ฆ this is the famous strong CP problem : โ€œ Why there โ€™ s no sign of strong interaction violating CP? โ€ 21

  22. าง 3. Strong CP problem โ€ข Letโ€™s do reverse engineering for าง ๐œ„ being zero: ๐œ„ ๐‘• 2 ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + าง ๐บ ๐‘๐œˆ๐œ‰ ๐‘ ๐œ„ = ๐œ„ + arg det ๐‘ chiral transformation (for real quark mass) ๐œ„ 22

  23. าง าง 3. Strong CP problem โ€ข Let โ€™ s do reverse engineering for าง ๐œ„ being zero: โ€œ Maybe there is something that cancels เดฅ ๐œพ at the ground state. โ€ ๐‘• 2 ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + ๐œ„ + ๐‘ก๐‘๐‘›๐‘“๐‘ขโ„Ž๐‘—๐‘œ๐‘• ๐บ ๐‘๐œˆ๐œ‰ ๐‘ ๐œ„ + ๐‘ก๐‘๐‘›๐‘“๐‘ขโ„Ž๐‘—๐‘œ๐‘• = ๐œ„ + arg det ๐‘ + ๐‘ก๐‘๐‘›๐‘“๐‘ขโ„Ž๐‘—๐‘œ๐‘• chiral transformation (for real quark mass) ๐œ„ 23

  24. าง าง 3. Strong CP problem โ€ข Let โ€™ s do reverse engineering for าง ๐œ„ being zero: โ€œ Maybe there is something that cancels เดฅ ๐œพ at the ground state. โ€ ๐‘• 2 ๐œ„ + ๐‘ ๐‘ฆ ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + ๐บ ๐‘๐œˆ๐œ‰ ๐‘ ๐‘” ๐‘ ๐œ„ + ๐‘ ๐‘ฆ = ๐œ„ + arg det ๐‘ + ๐‘ ๐‘ฆ ๐‘” ๐‘” ๐‘ ๐‘ chiral transformation (for real quark mass) Peccei and Quinn: โ€œ something is the axion field a(x) โ€ ๐œ„ U 1 PQ : ๐‘ ๐‘ฆ โŸถ ๐‘ ๐‘ฆ + ๐›ฝ๐‘” ๐‘ 24

  25. าง าง 3. Strong CP problem โ€ข What happens when U 1 PQ is imposed? 1. A particle corresponding to U 1 PQ is assumed: ๐‘… = ๐œ๐‘“ ๐‘—๐‘ ๐‘ฆ /๐‘” ๐‘ ๐‘• 2 ๐œ„ + ๐‘ ๐‘ฆ 2. Such particle โ€™ s mass has a form: ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + ๐บ ๐‘ ๐‘๐œˆ๐œ‰ ๐‘› ๐‘ ~๐‘“ ๐‘—๐‘ ๐‘ฆ /๐‘” ๐‘” ๐‘ ๐‘ ๐œ„ + ๐‘ ๐‘ฆ = ๐œ„ + arg det ๐‘ + ๐‘ ๐‘ฆ 3. Such particle also experiences chiral transformation ๐‘” ๐‘” (or, the mass term is now added to M) ๐‘ ๐‘ chiral transformation (for real quark mass) ๐œ„ 25

  26. 3. Strong CP problem โ€ข Now, let โ€™ s do what we did on SSB section: ๐œ–๐‘Š ๐‘“๐‘”๐‘” โ€ข Question: โ€œ find ๐‘ that = 0 โ€ ๐œ–๐‘ โ€ข Answer: โ€œ The minima happens at ๐‘ = โˆ’ าง ๐‘ โ€ ๐œ„๐‘” ๐‘ โ€ข Then: าง ๐‘ = 0 at the ground state! โ†’ CP violation might not be observed! ๐œ„ + ๐‘” 26

Recommend


More recommend