Axion as a Dark matter 20195513 Minsang Yu 1
Contents 1. Spontaneous Symmetry Breaking (SSB) U 1 A problem 2. 3. Strong CP problem 4. Axion Search 5. Summary 2
1. Spontaneous Symmetry Breaking (SSB) โข Consider a simple Lagrangian for a (real) scalar field: โ = 1 2 ๐ ๐ ๐๐ ๐ ๐ โ ๐ ๐ โข For a โsymmetricโ potential: โ Symmetric โ potential means: ๐ โ๐ = ๐ ๐ 2 ๐ 2 ๐ 2 + ๐ 4 ๐ ๐ = โ 1 4 ๐ 4 โข Our goal: Take a look at the ground states! 3
1. Spontaneous Symmetry Breaking (SSB) โข Here, It is known that : โ constant configuration of scalar field such that minimizes the potential term also minimizes the kinetic term at the same time. โ ๐๐ ๐๐ฟ ๐ = ๐๐๐๐ก๐ข๐๐๐ข , ๐๐ = 0 ๐๐ = 0 4
1. Spontaneous Symmetry Breaking (SSB) โข For simplicity, let โ s consider only two potentials: ๐ ๐ = โ ๐ ๐ ๐ 2 + 1 ๐ ๐ = + ๐ ๐ ๐ 2 + 1 4 ๐ 4 4 ๐ 4 5
1. Spontaneous Symmetry Breaking (SSB) ๐๐ โข constant field solutions for ๐๐ = 0 ๐ ๐ = โ ๐ ๐ ๐ 2 + 1 4 ๐ 4 1. ฯ = 0 โข Question: Does the solution enjoys the same symmetry as the potential? Yes! 1. ฯ = 0 = (โ0) ๐ = 0 6
1. Spontaneous Symmetry Breaking (SSB) ๐๐ โข constant field solutions for ๐๐ = 0 ๐ ๐ = + ๐ ๐ ๐ 2 + 1 4 ๐ 4 1. ฯ = 0 2. ฯ = +1 3. ฯ = โ1 โข Question: Does the solution enjoys the same symmetry as the potential? ๐ = 0 Yes! 1. ฯ = 0 = (โ0) No โฆ 2. ฯ = +1 โ โ(+1) ๐ = 1 ๐ = โ1 No โฆ 3. ฯ = โ1 โ โ(โ1) Two solutions do not follow the symmetry of the potential 7
1. Spontaneous Symmetry Breaking (SSB) โข For more intuition, letโs consider some perturbations: ๐ ๐ฆ = ๐ 0 + ๐๐(๐ฆ) derivative of constant is zero. โ ๐ = 1 ๐ ๐ ๐ 0 + ๐๐ ๐ฆ 2 ๐ ๐ ๐ 0 + ๐๐ ๐ฆ โ V ๐ 0 + ๐๐ ๐ฆ โ โ ๐ = 1 2 ๐ ๐ ๐๐๐ ๐ ๐๐ + 1 2 โ 1 4 2 ๐ 0 + ๐๐ ๐ฆ 4 ๐ 0 + ๐๐ ๐ฆ 8
1. Spontaneous Symmetry Breaking (SSB) โข For more intuition, let โ s consider some perturbations: ๐ ๐ฆ = ๐ 0 + ๐๐(๐ฆ) 2 โ 1 4 1 1 For ๐ = 0 ๐๐ โ โ๐๐ 2 ๐ ๐ ๐๐๐ ๐ ๐๐ + โ โ 0 = 2 ๐๐ ๐ฆ 4 ๐๐ ๐ฆ 2 โ 1 4 For ๐ = ยฑ1 โ โ ยฑ1 = 1 1 ๐๐ โ โ๐๐ 2 ๐ ๐ ๐๐๐ ๐ ๐๐ + 2 ยฑ1 + ๐๐ ๐ฆ 4 ยฑ1 + ๐๐ ๐ฆ โข What governs the underlying physics is potential, and it has a symmetry. โข What we see in our experience is small perturbations, and the symmetry is โ broken โ . (or, โ hidden โ . There IS always a symmetry, but we just don โ t see it explicitly. ) 9
1. Spontaneous Symmetry Breaking (SSB) OK. We got SSB with a real scalar field. How about a complex scalar field? 10
1. Spontaneous Symmetry Breaking (SSB) Real scalar field Complex scalar field โ = 1 โ = 1 2 ๐ ๐ ๐ โ ๐ ๐ ๐ โ ๐ ๐ 2 ๐ ๐ ๐๐ ๐ ๐ โ ๐ ๐ 2 ๐ 2 ๐ 2 + ๐ 4 2 ๐ 2 ๐ 2 + ๐ 4 ๐ ๐ = โ 1 ๐ ๐ = โ 1 4 ๐ 4 4 ๐ 4 ๐ โ ๐๐ ๐๐ ๐ โ โ๐ 11
1. Spontaneous Symmetry Breaking (SSB) 4 ๐ 4 ( ๐ 2 < 0 ) ๐ 4 1 2 ๐ 2 ๐ 2 + ๐ ๐ = โ Symmetric solution: Re ๐ = 0, Im ๐ = 0 Non-Symmetric solution: Re ๐ = ๐ ๐ , Im ๐ = 0 Re ๐ Q: If you also consider some perturbations here: Im ๐ A1: sym. solution falls to non-sym. solution. A2: non-sym. solution climbs the valley, or spins around. A degree of freedom is equivalent to a new particle. Itโs called a Goldstone boson . 12
าง 1. Spontaneous Symmetry Breaking (SSB) โข In strong interaction, เดค ๐๐ โ 0 , breaking the axial symmetry U 1 ๐ต . ๐ฃ๐ฃ , โข Therefore, there should be a Goldstone boson related to the SSB. โข There were two possibilities: 1. pion โ eats โ the goldstone boson and gets a polarization. 2. or, another particle lighter than pion should exist. โข โฆ and none of them was observed. This is so called โ ๐ ๐ ๐ฉ problem โ . 13
2. U 1 A problem โข OK. Something is wrong. But where did we miss? โ Maybe we used wrong boundary conditions on QCD vacuum. โ Gerard โt Hooft 14
2. U 1 A problem classical Quantum level โข Baryonic current: ๐ 2 ๐๐๐ = ๐ ๐ ๐ฟ ๐ (from Ward-Takahashi identity) ๐ = ๐ = 0 ๐๐ ๐บ ๐ ๐ ๐พ ๐ถ 32๐ 2 ๐บ ๐ ๐ ๐พ ๐ถ ๐ (Follows least action principle in average, but there are some offsets.) ๐ 2 โข Quantum corrections on action: 32๐ 2 เถฑ ๐ 4 ๐ฆ๐ ๐ ๐ฟ ๐ ๐๐ = ๐ = 0 โข Naรฏve boundary condition: ๐ต ๐ เถฑ ๐ 4 ๐ฆ๐ ๐ ๐ฟ ๐ = 0 ๐๐ = 0 (at spatial infinity) โข โ t Hooft boundary condition: 0 ๐ = แ เถฑ ๐ 4 ๐ฆ๐ ๐ ๐ฟ ๐ โ 0 ๐ต ๐ ๐๐๐ฃ๐๐ ๐ข๐ ๐๐๐ก๐๐๐ ๐ ๐๐ 0 ๐๐ โ 0 (at spatial infinity) 15
2. U 1 A problem โข Actually, using โt Hooft B.C. : เถฑ ๐ 4 ๐ฆ๐ ๐ ๐ฟ ๐ โ ๐ ๐๐๐ข๐๐๐๐ โข It means that there are n-vacua with the same energy (=degenerated): (๐ = 0) โ corresponding set ๐ต ๐ 0 n-vacua (๐ = 1) โ corresponding set ๐ต ๐ 1 {|๐ = ๐โฉ} โฆ โข Vacuum transition โข Classical: no transition btw different vacuum: ๐ ๐ = 0 โข Quantum: transition is OK: ๐ ๐ โ 0 16
2. U 1 A problem โข Well, to bypass the โtransition - ableโ vacuum, How aboutโฆ ๐ ๐ โฒ = 0. ๐ โ๐๐๐ |๐โฉ ๐ = เท ๐: ๐๐ ๐๐ ๐๐๐ ๐๐๐๐ข๐๐ ๐ขโ๐๐ ๐ โข OK. Now letโs see what happens to action ๐ in order to make ๐ as the eigenstate of the โ : ๐ ๐๐๐ = ๐ ๐ ๐ท๐ธ + ๐ ๐ 2 ๐๐ เดค 32๐ 2 เถฑ ๐ 4 ๐ฆ๐บ ๐บ ๐๐๐ ๐ 17
2. U 1 A problem โข One last thing: โข If we assume quark mass as real, we should get some proper coordinate. โข Such coordinate can be obtained through chiral transformation: าง ๐ = ๐ + arg det ๐ ๐ ๐ 2 ๐๐ เดค 32๐ 2 เถฑ ๐ 4 ๐ฆ๐บ ๐ ๐๐๐ = ๐ ๐ ๐ท๐ธ + าง ๐บ ๐๐๐ ๐ a CP-violating term 18
2. U 1 A problem ๐ ๐ 2 ๐๐ เดค 32๐ 2 เถฑ ๐ 4 ๐ฆ๐บ ๐ ๐๐๐ = ๐ ๐ ๐ท๐ธ + าง ๐บ ๐๐๐ ๐ a CP-violating term โ OK. Now we know why U 1 A problem happens. โ โ It โ s because of the CP violating term. Problem solved! โ โ Now let โ s go get าง ๐ ! โ (As าง ๐ is a free parameter, it lies somewhere on 0, 2๐ .) 19
2. U 1 A problem ๐ ~10 โ10 (extremely small) ๐ ๐ ~5 โ 10 โ16 เดฅ เดฅ ๐ ๐ โ ๐๐ โ 20
2. U 1 A problem โข ๐ is a free parameter in 0, 2๐ . โข So it โ s totally OK for าง ๐ being any value. ANY value. โข But why ZERO?? โข โฆ this is the famous strong CP problem : โ Why there โ s no sign of strong interaction violating CP? โ 21
าง 3. Strong CP problem โข Letโs do reverse engineering for าง ๐ being zero: ๐ ๐ 2 ๐๐ เดค 32๐ 2 เถฑ ๐ 4 ๐ฆ๐บ ๐ ๐๐๐ = ๐ ๐ ๐ท๐ธ + าง ๐บ ๐๐๐ ๐ ๐ = ๐ + arg det ๐ chiral transformation (for real quark mass) ๐ 22
าง าง 3. Strong CP problem โข Let โ s do reverse engineering for าง ๐ being zero: โ Maybe there is something that cancels เดฅ ๐พ at the ground state. โ ๐ 2 ๐๐ เดค 32๐ 2 เถฑ ๐ 4 ๐ฆ๐บ ๐ ๐๐๐ = ๐ ๐ ๐ท๐ธ + ๐ + ๐ก๐๐๐๐ขโ๐๐๐ ๐บ ๐๐๐ ๐ ๐ + ๐ก๐๐๐๐ขโ๐๐๐ = ๐ + arg det ๐ + ๐ก๐๐๐๐ขโ๐๐๐ chiral transformation (for real quark mass) ๐ 23
าง าง 3. Strong CP problem โข Let โ s do reverse engineering for าง ๐ being zero: โ Maybe there is something that cancels เดฅ ๐พ at the ground state. โ ๐ 2 ๐ + ๐ ๐ฆ ๐๐ เดค 32๐ 2 เถฑ ๐ 4 ๐ฆ๐บ ๐ ๐๐๐ = ๐ ๐ ๐ท๐ธ + ๐บ ๐๐๐ ๐ ๐ ๐ ๐ + ๐ ๐ฆ = ๐ + arg det ๐ + ๐ ๐ฆ ๐ ๐ ๐ ๐ chiral transformation (for real quark mass) Peccei and Quinn: โ something is the axion field a(x) โ ๐ U 1 PQ : ๐ ๐ฆ โถ ๐ ๐ฆ + ๐ฝ๐ ๐ 24
าง าง 3. Strong CP problem โข What happens when U 1 PQ is imposed? 1. A particle corresponding to U 1 PQ is assumed: ๐ = ๐๐ ๐๐ ๐ฆ /๐ ๐ ๐ 2 ๐ + ๐ ๐ฆ 2. Such particle โ s mass has a form: ๐๐ เดค 32๐ 2 เถฑ ๐ 4 ๐ฆ๐บ ๐ ๐๐๐ = ๐ ๐ ๐ท๐ธ + ๐บ ๐ ๐๐๐ ๐ ๐ ~๐ ๐๐ ๐ฆ /๐ ๐ ๐ ๐ ๐ + ๐ ๐ฆ = ๐ + arg det ๐ + ๐ ๐ฆ 3. Such particle also experiences chiral transformation ๐ ๐ (or, the mass term is now added to M) ๐ ๐ chiral transformation (for real quark mass) ๐ 25
3. Strong CP problem โข Now, let โ s do what we did on SSB section: ๐๐ ๐๐๐ โข Question: โ find ๐ that = 0 โ ๐๐ โข Answer: โ The minima happens at ๐ = โ าง ๐ โ ๐๐ ๐ โข Then: าง ๐ = 0 at the ground state! โ CP violation might not be observed! ๐ + ๐ 26
Recommend
More recommend