Axion Dark Matter searches @ IAXO Javier Redondo LMU,MPP, Munich
Axion Dark Matter ˜ a ( ω ) - Axion, a(x) : 0 - fi eld associated with θ QCD → a ( x ) /f a substructure? BE? transients? ∝ 1 m a = 0 . 006 eV10 9 GeV virialized DM mass, couplings, f a f a δω ω ∼ 10 − 6 ω - Cold Dark Matter as a classical fi eld a ( t ) ∼ a 0 cos( m a t ) m a - Local DM density: ρ CDM ⌘ 1 0 ' 0 . 3GeV 2 m 2 a a 2 cm 3 ! θ ( t ) ⇠ O (10 − 19 ) E ff ects depend on couplings - Predictions: 10 10 10 10 10 9 10 9 10 8 10 8 10 7 10 7 α s 8 π G e oscillating neutron EDM G θ ( t ) Observed relic density? d n ∼ O (10 − 34 e cm) × cos( m a t ) f a [GeV] α Electric (magnetic) fi elds 10 17 10 16 10 15 10 14 10 13 10 12 10 11 10 10 10 9 2 π E · B ext θ ( t ) c γ E ∼ O (10 − 12 V / m) | B ext | 10 T c γ × cos( m a t ) Scenario I 1 1 10 - 4 10 - 4 10 - 3 10 - 3 10 - 2 10 - 2 10 - 1 10 - 1 B ∼ O (10 − 20 T) | B ext | 10 T c γ × cos( m a t ) Scenario II α pol. & freq. changes 1 10 10 - 5 10 - 4 10 - 3 10 - 2 10 - 1 10 2 10 3 2 π E · B θ ( t ) c γ ν [GHz] cosmic rays 10 - 11 10 - 10 10 - 9 10 - 8 10 - 7 10 - 6 10 - 5 10 - 4 10 - 3 10 - 2 ¯ Spin precession ψγ 5 γ ν ψ ∂ µ θ ( t ) m a [eV] freq. dep. forces
Detecting EM fi elds from Axion Dark Matter - Haloscope (Sikivie 83) “Amplify resonantly the EM fi elds created by axionDM in a B- fi eld in a cavity” ✓ c γ α | B | ◆ 2 P out = κ ρ CDM [ V m a ] G Q (on resonance) 2 π f a m a | E a | 2 ∝ c 2 γ B 2 ν [GHz] 10 - 1 10 2 1 10 10 3 10 3 - Past experiments Florida U., RBF, ADMX, CARRACK RBF IAXO - Future endeavors: ADMX, ADMX-HF, YMCE, CAPP 10 2 10 2 ADMX - Parameters unexplored at low and high masses: WHY? UF ADMX-HF 10 10 Cylindrical cavity ( h/r=b) like ADMX but scaled ADMX2 KSVZ CARRACK? c γ Scenario I ADMX Scenario II 1 1 DFSZ 1 ( V ∝ m − 3 a ) P out ∝ V m a ∼ - Signal m 2 10 - 1 10 - 1 a 10 - 7 10 - 6 10 - 4 10 - 3 P noise = T sys ∆ ν a ∝ m 2 10 - 5 - Noise a m a [ µ eV] N = P out S p ∆ ν a ∆ ν a t - Signal/noise in of time, t, P noise Very easy, but needs Very complicated, ∝ c 4 d ∆ m a 1 large magnet volume! γ needs new ideas... - Scanning rate IAXO!!!!!!!!!!!!!!!!!!!!! m 9 m a dt a
IAXO magnet (Shilon et al JINST 9 (2014) T05002 fi eld map of transverse cut - Length = 20 m 2 - Magnetised radius ~ 1 m - Peak value ~ 5.4 T 1 - Average in bore 2.5 T - Available T ~ 4.5 K 0 (but warm bores in design) - 1 - 2 - Comparison B 2 V with other haloscope magnets is promising x [ m ] - 2 - 1 0 1 2 ADMX ADMX-HF IAXO CAST B [T] 8 9 2.5 * 9 Dimensions [cm] h,R =100,21 h,R =25,5 h,R* =2000,30 h,R =920,2.2 V [L] 140 2 8 x 1700 2 x 14 P out ∝ | B | 2 V [T 2 L] 9000 160 8 x 35000 2 x 1100
Low mass axion DM search in IAXO 2 - Geometry is not optimal for cylindrical cavity 1 - Use a big rectangular cavity (Baker et al , PRD D85 035018) 0 ◆ 2 ✓ l π ⇣ n π ⌘ 2 ⇣ m π ⌘ 2 ω 2 nml = + + w h L - 1 - w =1 m , h =0.5 m , L = 20 m - 2 x [ m ] - 2 - 1 0 1 2 L - Searching in the fundamental mode TE101 TE101 w ∼ 0 . 6 µ eV1 m ω 101 ∼ π h w G = 64 π 4 = 0 . 66 w ν [GHz] 10 - 1 10 2 1 10 2 π h 10 3 10 3 Q ( w, h ⌧ L ) ⇠ RBF 2 w + 4 h ω 101 δ IAXO IAXO (3 years) 10 2 10 2 - Very preliminary/rough and conservative estimates ADMX UF ADMX-HF ✓ B � dm a µ eV ◆ 2 ✓ 5 . 5 K ◆ r S ◆ ✓ Q t 10 10 G � ∼ 4 c 4 N = 2 c 2 � 3 . 5 × 10 5 / √ m 6 γ dt year γ 2 . 5T T sys 0 . 65 1min ADMX2 � S/N =3 KSVZ CARRACK? c γ ADMX 1 1 DFSZ - Possible (cryo. to 1+ K, best magnet position) 10 - 1 10 - 10 - 7 10 - 6 10 - 4 10 - 3 10 - 5 m a [eV]
more... - High Q cavity requires good stability of temperature, mechanical vibrations, etc... - Not compatible with solar tracking (?) - After IAXO solar run - Up to 8 cavities! - Optimise the location and compare with in-coil con fi guration G 1.0 0.8 0.6 0.5 0.4 0.0 0.2 x 0 - 0.5 0.6 0.8 1.0 1.2 1.4 w=1m, h=0.5m - 1.0 0.5 1.0 1.5 2.0 2.5 x 0 Baker et al , PRD D85 035018 - Tunning; dielectric rods, other ideas
high mass axion DM searches ... ideas - Boost all ADMX-like parameters (with ADMX-HF), CAPP - develop Q-limited ampli fi es beyond 10 GHz (SQUIDs, JPAs: Shokair et al 1405.3685) - bolometers (CARRACK, Lamoreaux 1306.3591) - superconducting fi lms to boost Q (Shokair et al 1405.3685) - multirod cavities + combine cavities (Kinion, UMI-30-19020) + Rectangular cavities (Baker et al , PRD D85 035018) + Dish antenna ( Horns et al JCAP04(2013)016 ) + Dielectric mirrors ( Jaeckel PRD 88 (2013) ) - Open resonators ( Hong et al , 1403.1576 ) - Fabry-Perot resonators ( Rybka, 1403.3121 ) - Dielectric resonators ( Jaeckel Ringwald, PLB659 509 )
Rectangular cavities L - fi xed m a , maximise power? TE101 h P ∝ [ V m a ] G Q ∼ [ whLm a ] 64 1 4 h + 2 w → hL 1 h π 4 n 2 ωδ m a w m a = ω n 01 ∼ n π TE101 tune w (independent of n ...) maximise transverse area! not the fundamental! Crossings with TE0ml (avoided?, coupling?) R+D in progress (B. Gimeno Valencia U., J.D. Gallego, Yebes O.) - cavity(s) to reach SCENARIO-II ?
Flat rectangular cavities - h= 1 m, L= 20 m , w tuned to m a , ~40 cavities (15% tuning), 1 year 10 2 1 10 10 3 10 3 10 2 T sis 10 2 10 2 10 2 1 (4.5 + HEMT) K (4.5 + QL) K y [ m ] (1.3 + HEMT) K 10 10 10 10 0 (1.3 + QL) 1 1 1 1 - 1 10 - 1 10 - 1 10 - 1 10 - 1 - 2 10 - 6 10 - 6 10 - 6 10 - 4 10 - 4 10 - 4 10 - 3 10 5 10 - 5 10 5 x [ m ] m a [eV] - 2 - 1 0 1 2 - Boost the power even more by combining N equal cavities coherently (high Q?) ◆ 2 ✓ P out dm a 1 ∝ 1 γ Q V 2 × N 2 ∝ c 4 m a dt Q T sis trade part of the Q for a large number prospects ranging 1-100 (# with increasing mass), ( Q =3000 to 500) Kinion, UMI-30-19020
Dish Antenna (Horns et al JCAP1304016, Jaeckel & JR JCAP1311016, PRD 88, 2013) - Trade cavity’s Q for volume (well... area...) [ V m a ] G Q ↔ A ✓ c γ α | B | ◆ 2 P out ' ρ CDM A 2 π f a m a - Broadband (cavity has to tuned to get Q ), here the band is limited by ampli fi er noise and gain (1 octave) - IAXO (B~ 2.5 T, A ~ 1 m 2 , t=year , T sis =QL) 10 2 1 10 10 3 10 3 is NOT enough for ρ CDM = 0 . 3GeV / cm 3 8-Dish IAXO QL - Dielectric layers enhance the emission (in phase) 10 2 10 2 P × N 2 10 10 c γ 1 1 + back production and all re fl exions ... 10 - 1 10 - 1 λ / 2 Alternating N layers of low/high, 10 - 6 10 - 4 10 - 3 10 - 5 turn your “dielectric mirror” into a resonator, (+narrows the band) m a [eV] Enhancements Q ~ N 2 are feasible in small bands ∆ m a ∼ m a /N 2
Dish Antenna (Horns et al JCAP1304016, Jaeckel & JR JCAP1311016, PRD 88, 2013) - IAXO (B~ 2.5 T, A ~ 1 m 2 , t=year , T sis =QL) 10 2 10 2 1 1 10 10 10 3 10 3 10 3 10 3 is NOT enough for ρ CDM = 0 . 3GeV / cm 3 8-Dish IAXO QL 10 2 10 2 10 2 10 2 - 0.1-1 meV range is most interesting in Scenario-II 10 10 10 10 8-Dish IAXO SYS - S-II predicts miniclusters of axion CDM c γ Scenario II 1 1 1 1 M mc ∼ 10 � 12 M � Ω mc / Ω a CDM ∼ O (1) 10 - 1 10 - 1 10 - 1 10 - 1 10 - 6 10 - 6 10 - 4 10 - 4 10 - 3 10 - 3 10 - 5 10 - 5 m a [eV] Zurek et al 07, See also Kolb & Tkachev 94 - Encounter with the Earth (every 10 4 years) ρ CDM × 10 6 , Q a ∼ 10 9 , t ∼ 3days - IAXO would see a huge signal, even with a realistic detector!!!!
Conclusions ν [GHz] 10 - 1 10 2 1 10 10 3 10 3 - IAXO huge magnetic volume IAXO big-box (3 years) IAXO RBF can have extraordinary applications in Axion Dark Matter 10 2 10 2 IAXO fl at # ADMX UF 10 10 ADMX-HF - Low mass, rectangular cavities plum KSVZ ADMX2 CARRACK? c γ 1 1 - Intermediate mass, combine DFSZ ADMX IAXO 8 DISH (SC-II) fl at rectangular cavities (R+D needed!) minicluster and QL detectors up to 20 GHz (JPAs?) 10 - 1 10 - 1 10 - 7 10 - 6 10 - 4 10 - 3 10 - 5 m a [ µ eV] - High mass is di ffi cult But mostly interesting for SC-II which implies miniclusters 8 Dish in IAXO can cover the 0.01-1 meV range continuously (1 encounter/10 4 years...?) - Other possibilities under scrutiny!
Thanks!
Recommend
More recommend