spherical tilings by congruent quadrangles
play

Spherical Tilings by Congruent Quadrangles Yohji Akama 1 Nico Van - PowerPoint PPT Presentation

Spherical Tilings by Congruent Quadrangles Yohji Akama 1 Nico Van Cleemput 2 1 Mathematical Institute Graduate School of Science Tohoku University 2 Combinatorial Algorithms and Algorithmic Graph Theory Department of Applied Mathematics, Computer


  1. Spherical Tilings by Congruent Quadrangles Yohji Akama 1 Nico Van Cleemput 2 1 Mathematical Institute Graduate School of Science Tohoku University 2 Combinatorial Algorithms and Algorithmic Graph Theory Department of Applied Mathematics, Computer Science and Statistics Ghent University Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  2. Spherical tilings edges are parts of great circles edge-to-edge tiling vertex degree ≥ 3 Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  3. Spherical tilings by congruent polygons all faces the same size ⇓ only triangles, quadrangles or pentagons Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  4. Chemical applications 1 1 Leonard R. MacGillivray, “Design Rules: A Net and Archimedean Polyhedra Score Big for Self-Assembly”, in: Angewandte Chemie International Edition 51.5 (2012), pp. 1110–1112, ISSN : 1521-3773, DOI : 10.1002/anie.201107282 , URL : http://dx.doi.org/10.1002/anie.201107282 . Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  5. Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  6. Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  7. Spherical tilings by congruent triangles Classification of spherical tilings by congruent triangles completed by Davies 2 and Ueno-Agaoka 3 . 2 H.L. Davies, “Packings of spherical triangles and tetrahedra”, in: Proc. Colloquium on Convexity (Copenhagen, 1965) , Kobenhavns Univ. Mat. Inst., 1967, pp. 42–51. 3 Y. Ueno and Y. Agaoka, “Classification of tilings of the 2-dimensional sphere by congruent triangles”, in: Hiroshima Math. J. 32.3 (2002), pp. 463–540. Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  8. The next step: classification of spherical tilings by congruent quadrangles Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  9. Types of quadrangles aaaa abab aabb aaab aabc abac abcd Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  10. Types of quadrangles a aaaa a a abab a aabb aaab aabc abac abcd Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  11. Types of quadrangles b aaaa a a abab aabb b aaab aabc abac abcd Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  12. Types of quadrangles aaaa abab a a aabb aaab b b aabc abac abcd Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  13. Types of quadrangles aaaa abab aabb b a a aaab aabc a abac abcd Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  14. Types of quadrangles aaaa abab aabb b aaab c a aabc a abac abcd Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  15. Types of quadrangles aaaa abab aabb aaab aabc b a a abac abcd c Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  16. Types of quadrangles aaaa abab aabb aaab aabc b abac c abcd a d Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  17. In every quadrangulation of the sphere, there exists a vertex of degree 3. Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  18. abab , abac b a a Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  19. abab , abac a a b a a Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  20. abab , abac a a ✌ b a a Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  21. abcd b a c d Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  22. abcd a or c b a c d Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  23. abcd a or c ✌ b a c d Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  24. Types of quadrangles aaaa abab aaab aabb aabc abac abcd Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  25. aaaa aabb a a a a a a a b b a b b Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  26. Classification of spherical tilings by congruent rhombi, kites and daggers completed by Akama-Sakano 4 . 4 Y. Akama and Y. Sakano, “Classification of spherical tilings by congruent rhombi (kites, darts)”, In preparation. Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  27. Types of quadrangles aaaa abab aaab aabb aabc abac abcd Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  28. Type 2 quadrangles b α δ a a γ β a Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  29. Even number of tiles Assignment of side lengths corresponds to perfect matching in dual a a a b a a a Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  30. Concave type 2 quadrangles Ambiguity of inner angles 5 Edge which is not a geodesic 5 5 Yohji Akama and K. Nakamura, “Spherical tilings by congruent quadrangles over pseudo-double wheels ( II ) the ambiguity of the inner angles”, Preprint, 2012. Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  31. Convex type 2 quadrangles 0 < α , β , γ , δ < π Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  32. Some restrictions on the angles α + δ < π + β α + δ < π + γ α = δ ⇔ β = γ ( 1 − cos β ) cos 2 α − ( 1 − cos β )( 1 − cos γ ) cos α cos δ +( 1 − cos γ ) cos 2 δ + cos β cos γ + sin α sin β sin γ sin δ = 1 Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  33. Area of a tile S = α + β + γ + δ − 2 π S = 4 π F Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  34. Area of a tile S = α + β + γ + δ − 2 π S = 4 π F α + β + γ + δ − 2 π = 4 π F Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  35. Generation of spherical tilings by congruent convex quadrangles of type 2 Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  36. Generate quadrangulations of the sphere Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  37. Generate perfect matchings for the dual of the quadrangulation Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  38. Generate perfect matchings for the dual of the quadrangulation Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  39. Generate perfect matchings for the dual of the quadrangulation Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  40. Generate perfect matchings for the dual of the quadrangulation Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  41. Filter out quadrangulations for which the dual has no perfect matching? Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  42. Every edge in the dual of a quadrangulation belongs to a perfect matching of the dual. 6 6 C. D. Carbonera and Jason F. Shepherd, On the existence of a perfect matching for 4-regular graphs derived from quadrilateral meshes. Tech. rep., UUSCI-2006-021, SCI Institute Technical Report, 2006. Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  43. Number of perfect matchings in the dual of quadrangulations 600 12 vertices 14 vertices 16 vertices 18 vertices 500 20 vertices 400 Number of graphs 300 200 100 0 0 50 100 150 200 250 Number of perfect matchings Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  44. Generate angle assignments: 2 F − 1 possibilities α β γ δ Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  45. α α γ β α δ α γ δ β γ β β γ γ δ α β δ γ β β δ δ γ δ α γ α α δ β β β γ α α δ δ γ Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  46. α α γ β α δ α γ δ β γ β β γ γ δ α β δ γ β β δ δ γ δ α γ α α δ β β β γ α α δ δ γ Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  47. α + β + δ = 2 α α γ β α δ α γ δ β γ β β γ γ δ α β δ γ β β δ δ γ δ α γ α α δ β β β γ α α δ δ γ Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  48. α + β + δ = 2 α α + β + δ = 2 α γ β α δ α γ δ β γ β β γ γ δ α β δ γ β β δ δ γ δ α γ α α δ β β β γ α α δ δ γ Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  49. α + β + δ = 2 α α + β + δ = 2 α γ α + γ + δ = 2 β α δ α γ δ β γ β β γ γ δ α β δ γ β β δ δ γ δ α γ α α δ β β β γ α α δ δ γ Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  50. α + β + δ = 2 α α + β + δ = 2 α γ α + γ + δ = 2 α + 2 β + δ = 2 β α δ α γ δ β γ β β γ γ δ α β δ γ β β δ δ γ δ α γ α α δ β β β γ α α δ δ γ Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

  51. α + β + δ = 2 α α + β + δ = 2 α γ α + γ + δ = 2 α + 2 β + δ = 2 β α δ . . . α γ δ β γ γ + 2 δ = 2 β β γ γ δ α β δ γ β β δ δ γ δ α γ α α δ β β β γ α α δ δ γ Akama, Van Cleemput Spherical Tilings by Congruent Quadrangles

Recommend


More recommend