congruent numbers
play

Congruent Numbers Definition (Congruent Number) An integer n is - PowerPoint PPT Presentation

Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins July 15, 2010 Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins Congruent Numbers Definition (Congruent Number)


  1. Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins July 15, 2010 Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  2. Congruent Numbers ◮ Definition (Congruent Number) An integer n is congruent if it is the area of a right triangle with rational length sides. Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  3. Congruent Numbers ◮ Definition (Congruent Number) An integer n is congruent if it is the area of a right triangle with rational length sides. ◮ E.g. 5 , 6 , 7 , 13 , 14 , 15 , 20 , 21 , 22 , 23 , 24 , 28 , .... Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  4. Congruent Numbers ◮ Definition (Congruent Number) An integer n is congruent if it is the area of a right triangle with rational length sides. ◮ E.g. 5 , 6 , 7 , 13 , 14 , 15 , 20 , 21 , 22 , 23 , 24 , 28 , .... ◮ 5 is the area of the 20 / 3 , 3 / 2 , 41 / 6 triangle. Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  5. Congruent Numbers ◮ Definition (Congruent Number) An integer n is congruent if it is the area of a right triangle with rational length sides. ◮ E.g. 5 , 6 , 7 , 13 , 14 , 15 , 20 , 21 , 22 , 23 , 24 , 28 , .... ◮ 5 is the area of the 20 / 3 , 3 / 2 , 41 / 6 triangle. ◮ Equivalently n is congruent if there exist rational x , y , z , w such that x 2 + ny 2 = z 2 and x 2 − ny 2 = w 2 . Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  6. Congruent Numbers ◮ Definition (Congruent Number) An integer n is congruent if it is the area of a right triangle with rational length sides. ◮ E.g. 5 , 6 , 7 , 13 , 14 , 15 , 20 , 21 , 22 , 23 , 24 , 28 , .... ◮ 5 is the area of the 20 / 3 , 3 / 2 , 41 / 6 triangle. ◮ Equivalently n is congruent if there exist rational x , y , z , w such that x 2 + ny 2 = z 2 and x 2 − ny 2 = w 2 . ◮ Congruent n correspond to points ( u 2 , v ) on the elliptic curve E n : y 2 = x 3 − n 2 x . Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  7. Tunnel’s Criterion Theorem (Tunnell) Let n be an odd squarefree positive integer. Set a ( n ) = # { ( x , y , z ) ∈ Z 3 | x 2 + 2 y 2 + 8 z 2 = n } − 2 # { ( x , y , z ) ∈ Z 3 | x 2 + 2 y 2 + 32 z 2 = n } , b ( n ) = # { ( x , y , z ) ∈ Z 3 | x 2 + 4 y 2 + 8 z 2 = n } − 2 # { ( x , y , z ) ∈ Z 3 | x 2 + 4 y 2 + 32 z 2 = n } . Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  8. Tunnel’s Criterion Theorem (Tunnell) Let n be an odd squarefree positive integer. Set a ( n ) = # { ( x , y , z ) ∈ Z 3 | x 2 + 2 y 2 + 8 z 2 = n } − 2 # { ( x , y , z ) ∈ Z 3 | x 2 + 2 y 2 + 32 z 2 = n } , b ( n ) = # { ( x , y , z ) ∈ Z 3 | x 2 + 4 y 2 + 8 z 2 = n } − 2 # { ( x , y , z ) ∈ Z 3 | x 2 + 4 y 2 + 32 z 2 = n } . If n is congruent then a ( n ) = 0. If 2 n is congruent then b ( n ) = 0. Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  9. Tunnel’s Criterion Theorem (Tunnell) Let n be an odd squarefree positive integer. Set a ( n ) = # { ( x , y , z ) ∈ Z 3 | x 2 + 2 y 2 + 8 z 2 = n } − 2 # { ( x , y , z ) ∈ Z 3 | x 2 + 2 y 2 + 32 z 2 = n } , b ( n ) = # { ( x , y , z ) ∈ Z 3 | x 2 + 4 y 2 + 8 z 2 = n } − 2 # { ( x , y , z ) ∈ Z 3 | x 2 + 4 y 2 + 32 z 2 = n } . If n is congruent then a ( n ) = 0. If 2 n is congruent then b ( n ) = 0. Moreover, if the weak BSD conjecture is true for the curve y 2 = x 3 − n 2 x then the converses also hold: a ( n ) = 0 implies n is congruent and b ( n ) = 0 implies 2 n is congruent. Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  10. Theta functions m = −∞ q tm 2 . ◮ Define θ t = � ∞ Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  11. Theta functions m = −∞ q tm 2 . ◮ Define θ t = � ∞ ◮ � a ( n ) q n , θ 8 ( θ 1 − θ 4 ) × ( θ 8 − 2 θ 32 ) = n ≡ 1 (mod 8) � a ( n ) q n , ( θ 2 − θ 8 )( θ 1 − θ 4 ) × ( θ 8 − 2 θ 32 ) = n ≡ 3 (mod 8) � b ( n ) q n , θ 16 ( θ 1 − θ 4 ) × ( θ 8 − 2 θ 32 ) = n ≡ 1 (mod 8) � b ( n ) q n . ( θ 4 − θ 16 )( θ 1 − θ 4 ) × ( θ 8 − 2 θ 32 ) = n ≡ 5 (mod 8) Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  12. Cyclic Convolution Definition (Convolution) Given two vectors of length n A = [ a 0 , a 1 , . . . , a n − 1 ] and B = [ b 0 , b 1 , . . . , b n − 1 ] the cyclic convolution of A , B is C = [ c 0 , c 1 , . . . , c n − 1 ] where � c k = a i b j i + j ≡ k (mod n ) . Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  13. Polynomial Multiplication Given polynomials of length n , f 1 ( x ) = a 0 + a 1 x + · · · + a n − 1 x n − 1 f 2 ( x ) = b 0 + b 1 x + · · · + b n − 1 x n − 1 computing the product polynomial f 1 f 2 ( x ) = c 0 + c 1 x + · · · c 2 n − 2 x 2 n − 2 is linear or acyclic convolution . � c k = a i b j . i + j = k Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  14. Convolution ◮ Cyclic convolution is polynomial multiplication mod x n − 1. Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  15. Convolution ◮ Cyclic convolution is polynomial multiplication mod x n − 1. ◮ Linear convolution (polynomial multiplication) can be performed by zero padding to length 2 n A = [ a 0 , a 1 , . . . , a n − 1 , 0 , 0 , . . . , 0] B = [ b 0 , b 1 , . . . , b n − 1 , 0 , 0 , . . . , 0] then perform cyclic convolution (polynomial multiplication modulo x 2 n − 1). Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  16. Negacyclic Convolution ◮ The negacyclic convolution is polynomial multiplication modulo x n + 1. Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  17. Negacyclic Convolution ◮ The negacyclic convolution is polynomial multiplication modulo x n + 1. ◮ Can be computed by performing the transformation x �→ ζ n y with ζ n a primitive 2 n -th root of unity ( ζ n n = − 1). Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  18. Negacyclic Convolution ◮ The negacyclic convolution is polynomial multiplication modulo x n + 1. ◮ Can be computed by performing the transformation x �→ ζ n y with ζ n a primitive 2 n -th root of unity ( ζ n n = − 1). ◮ Now perform multiplication modulo y n − 1 using cyclic convolution. Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  19. FFT Trick ◮ To compute multiplication modulo x 2 n − 1, compute it modulo x n − 1 using the cyclic convolution and compute it modulo x n + 1 using the negacyclic convolution, then recombine using CRT Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  20. FFT Trick ◮ To compute multiplication modulo x 2 n − 1, compute it modulo x n − 1 using the cyclic convolution and compute it modulo x n + 1 using the negacyclic convolution, then recombine using CRT ◮ The CRT step is an addition, a subtraction and division by 2 (called rescaling) Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  21. FFT Trick ◮ To compute multiplication modulo x 2 n − 1, compute it modulo x n − 1 using the cyclic convolution and compute it modulo x n + 1 using the negacyclic convolution, then recombine using CRT ◮ The CRT step is an addition, a subtraction and division by 2 (called rescaling) ◮ If n = 2 k d is divisible by a power of 2, can iterate the FFT trick a further k times Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  22. The DIF FFT ◮ Reduction mod x n − 1 and x n + 1 combined with the negacyclic transformation x �→ ζ n y is called a Decimation In Frequency (DIF) FFT butterfly Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  23. The DIF FFT ◮ Reduction mod x n − 1 and x n + 1 combined with the negacyclic transformation x �→ ζ n y is called a Decimation In Frequency (DIF) FFT butterfly ◮ A = [ s 0 , s 1 , . . . , s n − 1 , t 0 , t 1 , . . . , t n − 1 ] Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

  24. The DIF FFT ◮ Reduction mod x n − 1 and x n + 1 combined with the negacyclic transformation x �→ ζ n y is called a Decimation In Frequency (DIF) FFT butterfly ◮ A = [ s 0 , s 1 , . . . , s n − 1 , t 0 , t 1 , . . . , t n − 1 ] ◮ DIF FFT butterfly( A ) = [ s 0 + t 0 , s 1 + t 1 , . . . , s n − 1 + t n − 1 , s 0 − t 0 , ζ n ( s 1 − t 1 ) , . . . , ζ n − 1 ( s n − 1 − t n − 1 )] n Congruent Number Theta Coefficients to 10 12 William Hart, Gonzalo Tornaria, Mark Watkins

Recommend


More recommend