embedding computations in tilings part 1 fixed point
play

Embedding computations in tilings (Part 1: fixed point tilings) - PowerPoint PPT Presentation

Embedding computations in tilings (Part 1: fixed point tilings) Andrei Romashchenko 31 May 2016 1 / 18 What is a tile ? 2 / 18 What is a tile ? In this mini-course: Color: an element of a finite set C = { , , , , , , } 2 /


  1. Embedding computations in tilings (Part 1: fixed point tilings) Andrei Romashchenko 31 May 2016 1 / 18

  2. What is a tile ? 2 / 18

  3. What is a tile ? In this mini-course: Color: an element of a finite set C = {· , · , · , · , · , · , ·} 2 / 18

  4. What is a tile ? In this mini-course: Color: an element of a finite set C = {· , · , · , · , · , · , ·} Wang Tile: a unit square with colored sides. 2 / 18

  5. What is a tile ? In this mini-course: Color: an element of a finite set C = {· , · , · , · , · , · , ·} Wang Tile: a unit square with colored sides. i.e, an element of C 4 , e.g., 2 / 18

  6. What is a tile ? In this mini-course: Color: an element of a finite set C = {· , · , · , · , · , · , ·} Wang Tile: a unit square with colored sides. i.e, an element of C 4 , e.g., Tile set: a set τ ⊂ C 4 2 / 18

  7. What is a tile ? In this mini-course: Color: an element of a finite set C = {· , · , · , · , · , · , ·} Wang Tile: a unit square with colored sides. i.e, an element of C 4 , e.g., Tile set: a set τ ⊂ C 4 Tiling: a mapping f : Z 2 → τ that respects the matching rules 2 / 18

  8. Tiling: a mapping f : Z 2 → τ such that f ( i , j ) . right = f ( i + 1 , j ) . left , e.g., + f ( i , j ) . top = f ( i , j + 1) . bottom , e.g., + 3 / 18

  9. Tiling: a mapping f : Z 2 → τ such that f ( i , j ) . right = f ( i + 1 , j ) . left , e.g., + f ( i , j ) . top = f ( i , j + 1) . bottom , e.g., + Example. A finite pattern from a valid tiling: 3 / 18

  10. τ -tiling is a mapping f : Z 2 → τ that respects the local rules. 4 / 18

  11. τ -tiling is a mapping f : Z 2 → τ that respects the local rules. T ∈ Z 2 is a period if f ( x + T ) = f ( x ) for all x . 4 / 18

  12. τ -tiling is a mapping f : Z 2 → τ that respects the local rules. T ∈ Z 2 is a period if f ( x + T ) = f ( x ) for all x . Theorem. There exists a tile set τ such that (i) τ -tilings exist, and 4 / 18

  13. τ -tiling is a mapping f : Z 2 → τ that respects the local rules. T ∈ Z 2 is a period if f ( x + T ) = f ( x ) for all x . Theorem. There exists a tile set τ such that (i) τ -tilings exist, and (ii) all τ -tilings are aperiodic. 4 / 18

  14. A construction of an aperiodic tile set: 5 / 18

  15. A construction of an aperiodic tile set: ◮ define self-similar tile sets 5 / 18

  16. A construction of an aperiodic tile set: ◮ define self-similar tile sets ◮ observe that every self-similar tile set is aperiodic 5 / 18

  17. A construction of an aperiodic tile set: ◮ define self-similar tile sets ◮ observe that every self-similar tile set is aperiodic ◮ construct some self-similar tile set 5 / 18

  18. Macro-tile: N Macro-color Macro-color Macro-color N Macro-color an N × N square made of matching τ -tiles 6 / 18

  19. Fix a tile set τ and an integer N > 1. 7 / 18

  20. Fix a tile set τ and an integer N > 1. Definition 1 . A τ - macro-tile : an N × N square made of matching τ -tiles. 7 / 18

  21. Fix a tile set τ and an integer N > 1. Definition 1 . A τ - macro-tile : an N × N square made of matching τ -tiles. Definition 2 . A tile set ρ is simulated by τ : there exists a family of τ -macro-tiles R such that ◮ R is isomorphic to ρ , and ◮ every τ -tiling can be uniquely split by an N × N grid into macro-tiles from R . 7 / 18

  22. ✭ ✐❀ ❥ ✰ ✶✮ ✭ ✐❀ ❥ ✮ ✭ ✐ ✰ ✶ ❀ ❥ ✮ ✭ ✐❀ ❥ ✮ Example. A tile set ρ : Trivial tile set (only one color) 8 / 18

  23. ✭ ✐❀ ❥ ✰ ✶✮ ✭ ✐❀ ❥ ✮ ✭ ✐ ✰ ✶ ❀ ❥ ✮ ✭ ✐❀ ❥ ✮ Example. A tile set ρ : Trivial tile set (only one color) A tile set τ : A tile set that simulates a trivial tile set ρ 8 / 18

  24. Example. A tile set ρ : Trivial tile set (only one color) A tile set τ : A tile set that simulates a trivial tile set ρ ✭ ✐❀ ❥ ✰ ✶✮ ✭ ✐❀ ❥ ✮ ✭ ✐ ✰ ✶ ❀ ❥ ✮ ✭ ✐❀ ❥ ✮ 8 / 18

  25. ◆ ✭✵ ❀ ✵✮ ✭ ◆ − ✶ ❀ ✵✮ ✭✵ ❀ ◆ − ✶✮ ✭✵ ❀ ◆ − ✶✮ ✭✵ ❀ ✵✮ ✭✵ ❀ ✵✮ ✭✵ ❀ ✵✮ ✭ ◆ − ✶ ❀ ✵✮ 9 / 18

  26. Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself. 10 / 18

  27. Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself. Proposition . Self-similar tile set is aperiodic. 10 / 18

  28. Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself. Proposition . Self-similar tile set is aperiodic. Sketch of the proof: 10 / 18

  29. Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself. Proposition . Self-similar tile set is aperiodic. Sketch of the proof: 11 / 18

  30. Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself. Proposition . Self-similar tile set is aperiodic. Sketch of the proof: 12 / 18

  31. Simulating a given tile set ρ by macro-tiles. 13 / 18

  32. Simulating a given tile set ρ by macro-tiles. Representation of the tile set ρ : 13 / 18

  33. Simulating a given tile set ρ by macro-tiles. Representation of the tile set ρ : colors of a tile set ρ = ⇒ k -bits strings � 13 / 18

  34. Simulating a given tile set ρ by macro-tiles. Representation of the tile set ρ : colors of a tile set ρ = ⇒ k -bits strings � a predicate a tile set ρ = ⇒ P ( x 1 , x 2 , x 3 , x 4 ) � on 4-tuples of colors 13 / 18

  35. Simulating a given tile set ρ by macro-tiles. Representation of the tile set ρ : colors of a tile set ρ = ⇒ k -bits strings � a predicate a tile set ρ = ⇒ P ( x 1 , x 2 , x 3 , x 4 ) � on 4-tuples of colors � � � a TM that accepts only 4-tuples of colors for the ρ -tiles 13 / 18

  36. The scheme of implementation: Turing machine 14 / 18

  37. A more generic construction: universal TM + program Universal Turing machine program 15 / 18

  38. A more generic construction: universal TM + program Universal Turing machine program A fixed point: simulating tile set = simulated tile set 15 / 18

  39. How to get aperiodicity + quasiperiodicity ? Universal Turing machine program 16 / 18

  40. How to get aperiodicity + quasiperiodicity ? Universal Turing machine program The problematic part is the computation zone... 16 / 18

  41. Duplicate all 2 × 2 patterns that may appear in the computation zone! Universal Turing machine program 17 / 18

  42. A slot for a 2 × 2 patterns from the computation zone: ( i, j + 4) ( i + 1 , j + 4) ( i + 2 , j + 4) ( i + 3 , j + 4) ( i, j + 3) ( i + 1 , j + 3) ( i + 1 , j + 3) ( i + 2 , j + 3) ( i + 2 , j + 3) ( i + 3 , j + 3) ( i + 3 , j + 3) ( i + 4 , j + 3) ( i, j + 3) ( s, t + 2) ( s + 1 , t + 2) ( i + 3 , j + 3) ( i, j + 3) ( s, t + 2) ( s + 1 , t + 2) ( i + 3 , j + 3) ( i, j + 2) ( s, t + 1) ( s, t + 1) ( s + 1 , t + 1) ( s + 1 , t + 1) ( s + 2 , t + 1) ( s + 2 , t + 1) ( i + 4 , j + 2) ( i, j + 2) ( s, t + 1) ( s + 1 , t + 1) ( i + 3 , j + 2) ( i, j + 2) ( s, t + 1) ( s + 1 , t + 1) ( i + 3 , j + 2) ( i, j + 1) ( s, t ) ( s, t ) ( s + 1 , t ) ( s + 1 , t ) ( s + 2 , t ) ( s + 2 , t ) ( i + 4 , j + 1) ( i, j + 1) ( s, t ) ( s + 1 , t ) ( i + 3 , j + 1) ( i, j + 1) ( s, t ) ( s + 1 , t ) ( i + 3 , j + 1) ( i, j ) ( i, j + 1) ( i + 1 , j ) ( i + 2 , j ) ( i + 2 , j ) ( i + 3 , j ) ( i + 3 , j ) ( i + 4 , j ) ( i, j ) ( i + 1 , j ) ( i + 2 , j ) ( i + 3 , j ) 18 / 18

Recommend


More recommend