sparse pca
play

Sparse PCA refusing to graduate :-) Aviad Rubinstein (UC Berkeley) - PowerPoint PPT Presentation

Best* Case Approximability of Sparse PCA refusing to graduate :-) Aviad Rubinstein (UC Berkeley) Joint work with Siu-On Chan and Dimitris Papailliopoulos Sparse Principal Component Analysis max s.t. 2 = 1 and 0


  1. Best* Case Approximability of Sparse PCA refusing to graduate :-) Aviad Rubinstein (UC Berkeley) Joint work with Siu-On Chan and Dimitris Papailliopoulos

  2. Sparse Principal Component Analysis max 𝑦 ⊤ 𝐵𝑦 s.t. 𝑦 2 = 1 and 𝑦 0 ≤ 𝑙 (and 𝐵 is PSD) 7.1 1.3 ⋯ 4.5 −2.6 −3.4 ⋯ 6.2 ⋮ ⋮ ⋱ ⋮ 3.1 9.2 ⋯ −4.8 “Yes we SPCA!” -Obama, 2008

  3. Sparse Spiked Covariance Model (“average case”) rank 1 ⋯ 0 𝑙 × 𝑙 block 𝐵 = 𝐽 𝑜 + +noise ⋮ ⋱ ⋮ 0 ⋯ 0 • Cool sample-complexity / computational-complexity tradeoff [Berthet & Rigollet ’13 , Wang et al ’14 , Gao et al ’15 , Kraugthgamer et al ’15 , Ma & Wigderson ’15] • Good news: trivial algorithm gives (1 − 𝑝 1 ) -approximation • Bad news: this is not what your data looks like!

  4. Our results: “best - case” analysis Computationally intractable even when given the exact covariance matrix: • NP-hard to approximate to within (1 − 𝜗) • SSE-hard to approximate to within any 𝑑 • Quasi-quasi-poly ( 𝑓 𝑓 lnln𝑜 ) integrality gap • 𝑜 −1/3 -approximation algorithm “Vive la SPCA!” -Napoleon, 1808

Recommend


More recommend