Simplicity and Explanation in Metrical Typology Eugene Buckley University of Pennsylvania NAPhC4 — 13 May 2006 1
Theoretical Desiderata • Descriptive adequacy – can every language be generated? • Formal simplicity – are constraints evaluated locally? • Typological accuracy – are unattested languages impossible? – what is the right locus of explanation? 2
Trends in Metrical Typology • Directional foot construction. – stepwise iteration • Gradient alignment in OT. – modeling of the iterative approach • Categorical alignment and Lapse. – a simpler theory – distinct typological predictions 3
Directional Trochees Pintupi: left to right ( t j á mu ) ( lìm pa ) ( t j ù ŋ ku ) ( ṭ í ḷ i ) ( rì ŋ u ) ( làm pa ) t j u Warao: right to left ( yà pu ) ( rù ki ) ( tà ne ) ( há se ) e ( nà ho ) ( rò a ) ( hà ku ) ( tá i ) 4
Gradient Alignment Pintupi: A LL -F T -L EFT ( ṭ í ḷ i ) ( rì ŋ u ) ( làm pa ) t j u 0 2 4 * ṭ i ( ḷ í ri ) ( ŋ ù lam ) ( pà t j u ) 1 3 5 5
Relative Alignment Violations Parse All-Ft All-Ft Syllable Left Right (10)00000 **!*** ***** * **,**** *,***,***** ☞ (10)(20)(20)0 (10)0(20)( 20) * ***,****!* **,***** 0(10)(20)(20) * *,***,***!** **,**** 6
Categorical Alignment • Gradient alignment is massively nonlocal. – also not finite state (Eisner, Bíró) • Alignment has been used both gradiently and categorically. • All OT constraints should be categorical (McCarthy) . • Produces a better stress typology. 7
Previous Nongradient Work • Eisner (1998) – “Primitive Optimality Theory” – strictly local constraints • Kager (2001) – emphasis on rhythmic constraints • McCarthy (2003) – all constraints are categorical 8
Rhythmic wellformedness • Categorical alignment of one foot at the left or right edge. • Generate location of other feet from local properties of lapse and clash. • Lapses are preferred in certain positions. – adjacent to main stress – at right edge of domain 9
Constraints on Lapses *L APSE No two adjacent unstressed syllables. *I NITIAL -L APSE No lapse at the left edge. L APSE - AT -P EAK Lapse must be adjacent to the peak. L APSE - AT -E ND Lapse must be adjacent to the right edge. 10
Right-Edge Lapses Trochees, LR ( σ́ σ ) ( σ̀ σ ) ( σ̀ σ ) ( σ́ σ ) ( σ̀ σ ) ( σ̀ σ ) σ Trochees, RL ( σ̀ σ ) ( σ̀ σ ) ( σ́ σ ) σ ( σ̀ σ ) ( σ̀ σ ) ( σ́ σ ) Iambs, LR ( σ σ́ ) ( σ σ̀ ) ( σ σ̀ ) ( σ σ́ ) ( σ σ̀ ) ( σ σ̀ ) σ * Iambs, RL ( σ σ̀ ) ( σ σ̀ ) ( σ σ́ ) σ ( σ σ̀ ) ( σ σ̀ ) ( σ σ́ ) 11
Typology: Trochees, ER-L *Init At At Align Align *Lapse Lapse End Peak L R * * * (10)(20)(20)0 * * *! (10)(20)0(20) * * (10)0(20)(20) * 0(10)(20)(20) 12
Typology: Trochees, ER-R *Init At At Align Align *Lapse Lapse End Peak L R * 0(20)(20)(10) * * *! (20)0(20)(10) * * (20)(20)0(10) * * (20)(20)(10)0 13
Typology: Iambs, ER-L *Init At At Align Align *Lapse Lapse End Peak L R * (01)(02)(02)0 * * *! (01)(02)0(02) * * (01)0(02)(02) * *! * *! 0(01)(02)(02) 14
Typology: Iambs, ER-R *Init At At Align Align *Lapse Lapse End Peak L R * *! * *! *! 0(02)(02)(01) * * *! (02)0(02)(01) * * (02)(02)0(01) * (02)(02)(01)0 15
Local *L APSE Kager (2001): No two adjacent unstressed syllables. (I.e. *00) McCarthy (2003): * σ̆ / σ̆ 16
Nonlocal *I NITIAL- L APSE Kager (2001): No lapse at the left edge. (I.e. *00 / [ ) McCarthy (2003): * σ̆ / Wd [ σ̆ 17
Replacing *I NITIAL- L APSE Rule out: [ σ̆ ( σ̆ Nonlocal lapse avoidance: * σ̆ / Wd [ σ̆ Local foot alignment (categorical): Align-L (Wd, Ft) 18
Di ff erences from *I NITIAL- L APSE • Same basic force in an iambic system. – 0(01) violates both equally – if unary 0(1) then only Align-L is violated – issue then becomes syllable weight • Potential di ff erence in a trochaic system. – 0(10) violates Align-L but has no lapse – increases number of violations, but no e ff ect to typology (as we’ll see) 19
Nonlocal L APSE-AT- E ND Kager (2001): Lapse must be adjacent to the right edge. (I.e. If 00 then 00] ) McCarthy (2003): * σ̆ / σ̆ α where α is non-null 20
Replacing L APSE-AT- E ND Rule out: σ̆ ) σ̆ unless ] Wd Nonlocal lapse avoidance: * σ̆ / σ̆ α Local foot non-alignment: *Align-R (Word, Foot) 21
Di ff erences from L APSE-AT- E ND • Pushes foot from right edge. – lapse there rather than ealier in word – equal to extrametricality • Similar e ff ect for a trochaic system. – (10)0 satisfies both equally – if unary (1)0 then only Align is violated – issue is again syllable weight • Potential di ff erence in an iambic system. – (01)0 satisfies *Align-R and has no lapse – could change violations elsewhere in word 22
Nonlocal L APSE-AT- P EAK Kager (2001): Lapse must be adjacent to the peak. (I.e. If 00 then 100 or 001) McCarthy (2003): * σ̆ / α σ̆ β where α does not end and β does not begin with σ́ 23
Replacing L APSE-AT- P EAK Rule out: σ̆ ) σ̆ ( σ̀ , σ̆ ( σ̆σ̀ ) , etc. Nonlocal lapse avoidance: * σ̆ / α σ̆ β where α or β ≠ σ́ Local foot non-alignment: *Align (Hd(Wd), R; Ft, L) or L, R 24
Di ff erences from L APSE-AT- P EAK • Symmetry not built into *Align constraint, but not needed anyway. – main stress foot is at left or right edge, so only the other side can abut a foot – potentially distinct if foot extrametricality • Conceptually, a kind of clash avoidance. – foot pushed away from main stress – prevents the unfooted syllable — and the lapse — from bein ɡ in other positions 25
Kager: Trochees, ER-L *Init At At Align Align *Lapse Lapse End Peak L R * * * (10)(20)(20)0 * * *! (10)(20)0(20) * * (10)0(20)(20) * 0(10)(20)(20) 26
Local: Trochees, ER-L *Align *Align Align Align *Lapse R Hd L R * * * (10)(20)(20)0 * * *! (10)(20)0(20) * * (10)0(20)(20) * * * 0(10)(20)(20) 27
Kager: Trochees, ER-R *Init At At Align Align *Lapse Lapse End Peak L R * 0(20)(20)(10) * * *! (20)0(20)(10) * * (20)(20)0(10) * * (20)(20)(10)0 28
Local: Trochees, ER-R *Align *Align Align Align *Lapse R Hd L R * * * 0(20)(20)(10) * * *! (20)0(20)(10) * * (20)(20)0(10) * * * (20)(20)(10)0 29
Kager: Iambs, ER-L *Init At At Align Align *Lapse Lapse End Peak L R * (01)(02)(02)0 * * *! (01)(02)0(02) * * (01)0(02)(02) * *! * *! 0(01)(02)(02) 30
Local: Iambs, ER-L *Align *Align Align Align *Lapse R Hd L R * * (01)(02)(02)0 * * *! (01)(02)0(02) * * (01)0(02)(02) * * *! *! 0(01)(02)(02) 31
Kager: Iambs, ER-R *Init At At Align Align *Lapse Lapse End Peak L R * *! * *! *! 0(02)(02)(01) * * *! (02)0(02)(01) * * (02)(02)0(01) * (02)(02)(01)0 32
Local: Iambs, ER-R *Align *Align Align Align *Lapse R Hd L R * * *! *! 0(02)(02)(01) * * *! (02)0(02)(01) * * (02)(02)0(01) * * (02)(02)(01)0 33
Extrametricality • Preference for final lapse is the expression of final extrametricality. – Kager’s L APSE-AT- E ND – Local *A LIGN -R • Many typologies assume that initial extrametricality is impossible. • It’s rare, but not impossible. – Symmetrical *A LIGN -L 34
Kashaya Extrametricality li (bu tá:) du ‘keep whistling’ ca (q h a má:) (la wi:) (bi ʔ ) ‘start to cut downward’ pih (mo yá:) (da du) ‘smile while walking around’ 35
Previous: Trochees, ER-L *Align *Align Align Align *Lapse R Hd L R * * * (10)(20)(20)0 * * *! (10)(20)0(20) * * (10)0(20)(20) * * * 0(10)(20)(20) 36
Revised: Trochees, ER-L *Align *Align *Align Align Align *Lapse L R Hd L R * * * * (10)(20)(20)0 * * * *! (10)(20)0(20) * * * (10)0(20)(20) * * * 0(10)(20)(20) 37
Previous: Trochees, ER-R *Align *Align Align Align *Lapse R Hd L R * * * 0(20)(20)(10) * * *! (20)0(20)(10) * * (20)(20)0(10) * * * (20)(20)(10)0 38
Revised: Trochees, ER-R *Align *Align *Align Align Align *Lapse L R Hd L R * * * 0(20)(20)(10) * * * *! (20)0(20)(10) * * * (20)(20)0(10) * * * * (20)(20)(10)0 39
Previous: Iambs, ER-L *Align *Align Align Align *Lapse R Hd L R * * (01)(02)(02)0 * * *! (01)(02)0(02) * * (01)0(02)(02) * * *! *! 0(01)(02)(02) 40
Revised: Iambs, ER-L *Align *Align *Align Align Align *Lapse L R Hd L R * * * (01)(02)(02)0 * * * *! (01)(02)0(02) * * * (01)0(02)(02) * * * * 0(01)(02)(02) 41
Previous: Iambs, ER-R *Align *Align Align Align *Lapse R Hd L R * * *! *! 0(02)(02)(01) * * *! (02)0(02)(01) * * (02)(02)0(01) * * (02)(02)(01)0 42
Revised: Iambs, ER-R *Align *Align *Align Align Align *Lapse L R Hd L R * * * * 0(02)(02)(01) * * * *! (02)0(02)(01) * * * (02)(02)0(01) * * * (02)(02)(01)0 43
Recommend
More recommend