simple eulerian methods for compressible fluids in
play

Simple Eulerian Methods for Compressible Fluids in Domains with - PowerPoint PPT Presentation

Simple Eulerian Methods for Compressible Fluids in Domains with Moving Boundaries Alina Chertock North Carolina State University chertock@math.ncsu.edu joint work with Armando Coco, Yuanzhen Cheng, Smadar Karni, Alexander Kurganov and Giovanni


  1. Simple Eulerian Methods for Compressible Fluids in Domains with Moving Boundaries Alina Chertock North Carolina State University chertock@math.ncsu.edu joint work with Armando Coco, Yuanzhen Cheng, Smadar Karni, Alexander Kurganov and Giovanni Russo supported in part by

  2. Compressible Euler Equations       ρ ρu ρv ρu 2 + p       ρu ρuv       + + = 0 ρv 2 + p       ρv ρuv E u ( E + p ) v ( E + p ) t x y γ − 1 + ρ p 2( u 2 + v 2 ) E = • ρ is the fluid density; • u, v are the velocities; • E is the total energy; • p is the pressure; � γp • c = is the speed of sound. ρ 1

  3. Two Types of Problems • Multicomponent Flow: We assume that γ is a piecewise constant function propagation with the fluid velocity according to γ t + uγ x + vγ y = 0 . • Problems with Changing Geometries: – The right boundary is a moving – Flow around an (oscillating) solid wall with a prescribed solid circle. equation of motion x = x B ( t ) I II Moving Boundary x B 2

  4. Conservative Methods     ρ ρu ρu 2 + p     ρu     w t + F ( w ) x = 0 ⇔ + = 0     E u ( E + p ) ργ uργ t x Godunov-type discretization: � � j − ∆ t w n +1 w n ¯ = ¯ H j +1 / 2 − H j − 1 / 2 , j ∆ x w n w n H j +1 / 2 = H ( . . . , ¯ j , ¯ j +1 , . . . ) , H ( . . . , w , w , . . . ) = F ( w ) . The major difficulty: to ensure that the pressure equilibrium between fluid components is not disturbed by the numerical scheme. 3

  5. What is going wrong? (S. Karni) 4

  6. Multicomponent Flow     ρ ρu ρu 2 + p     ρu w t + f ( w ) x = 0 ⇐ ⇒ + = 0 E u ( E + p ) t x � � E − 1 2 ρu 2 EOS: p = ( γ − 1) − γp ∞ w = ( ρ, ρu, E ) T We assume that γ is a piecewise constant function propagation with the fluid velocity according to γ t + uγ x = 0 . 5

  7. Multi-Fluid Example pressure CONSERVATIVE METHOD EXACT SOLUTION 1.12 1.1 1.08 1.06 1.04 1.02 1 0.98 0 0.2 0.4 0.6 0.8 1 � (1 . 0 , 1 . 0 , 1 . 0 , 1 . 6) T , if x < 0 . 25 , ( ρ, u, p, γ ) T = (0 . 1 , 1 . 0 , 1 . 0 , 1 . 4) T , if x > 0 . 25 . Different EOS... 6

  8. What is going wrong? t n + 1 J-1 J J+1 t n x J � 1/2 x J + 1/2 material interface • Fluxes are computed using the information in the mixed cell. • No valid EOS in mixed cells. 7

  9. Some Models/Schemes • Conserve not only total mass and momentum but also total energy. – Volume-of-Fluid Method (Noh & Woodward; Collela, Glaz & Ferguson). – Internal Energy Correction Algorithm (Jenny, Mueller & Thomann). – A Fluid-Mixture Type Algorithm (Shyue). • Conserve only total mass and momentum but not total energy. – Pressure Evolution Method (Karni). – Ghost-Fluid Method for the Poor (Abgrall & Karni). • Nonconservative – Ghost-Fluid Method (Fedkiw, Aslam, Merriman & Osher). • – Conservative locally moving mesh method for multifluid flows (A.C. & A. Kurganov) – A second-order finite-difference method for compressible fluids in domains with moving boundaries , (A. C., A. Coco, A. Kurganov and G. Russo) – Interface tracking method for compressible multifluids , (A.C., S. Karni & A. Kurganov) 8

  10. Semi-Discrete Central-Upwind Scheme – 1-D Case     ρ ρu ρu 2 + p     w t + f ( w ) x = 0 ⇐ ⇒ ρu + = 0 E u ( E + p ) t x w := ( ρ, ρu, E ) T Computational cells: C j := [ x j − 1 2 , x j + 1 2 ] � w j ( t ) := 1 The cell averages: w ( x, t ) dx ∆ x C j Time evolution: 2 ( t ) − H j − 1 2 ( t ) H j + 1 d dt w j ( t ) = − ∆ x � � : numerical fluxes H j + 1 2 9

  11. � � � � w ± { w j ( t ) } → � w ( · , t ) → 2 ( t ) → 2 ( t ) → { w j ( t + ∆ t ) } H j + 1 j + 1 (Discontinuous) piecewise-linear reconstruction: w ( x, t ) := w j ( t ) + ( w x ) j ( x − x j ) , � x ∈ C j It is conservative, second-order accurate, and non-oscillatory provided the slopes, { ( w x ) j } , are computed by a nonlinear limiter Example — Generalized Minmod Limiter � � θ w j − w j − 1 , w j +1 − w j − 1 , θ w j +1 − w j ( w x ) j = minmod ∆ x 2∆ x ∆ x  where min j { z j } , if z j > 0 ∀ j,   max j { z j } , if z j < 0 ∀ j, minmod( z 1 , z 2 , ... ) :=   0 , otherwise , and θ ∈ [1 , 2] is a constant 10

  12. � � � � w ± { w j ( t ) } → � w ( · , t ) → 2 ( t ) → 2 ( t ) → { w j ( t + ∆ t ) } H j + 1 j + 1 w ± 2 ( t ) are the point values of j + 1 w ( x, t ) = w j + ( w x ) j ( x − x j ) , � x ∈ C j at x j + 1 2 : 2 + 0 , t ) = w j +1 − ∆ x w + 2 := � w ( x j + 1 2 ( w x ) j +1 j + 1 2 − 0 , t ) = w j + ∆ x w − 2 := � w ( x j − 1 2 ( w x ) j j + 1 11

  13. � � � � w ± { w j ( t ) } → � w ( · , t ) → j ( t ) → 2 ( t ) → { w j ( t + ∆ t ) } H j + 1 2 ( t ) = H ( w − 2 ( t ) , w + 2 ( t )) H j + 1 j + 1 j + 1 Example — Central-Upwind Flux: [Kurganov, Lin, Noelle, Petrova, Tadmor, et al.; 2000–2007] a + 2 f ( w + a + 2 f ( w − 2 ) − a − 2 a − 2 ) � � j + 1 j + 1 j + 1 j + 1 j + 1 j + 1 w + 2 − w − 2 2 = + H j + 1 j + 1 j + 1 a + 2 − a − a + 2 − a − 2 j + 1 j + 1 j + 1 j + 1 2 2 � � a ± 2 ( t ) = a ± w + 2 , w − are one-sided local speeds, estimated using j + 1 j + 1 j + 1 j + 1 2 2 the largest and the smallest eigenvalues of the Jacobian ∂ f ∂ w . 2 ( t ) − H j − 1 2 ( t ) H j + 1 d dt w j ( t ) = − ∆ x 12

  14. Boundary Treatment in 1-D • Assume that at some time level t the wall is located in cell J • All computational cells are divided into 3 groups: – Internal cells with reliable data – Boundary cells with unreliable data – External cells with no data Moving Boundary x J � 5/2 x J � 3/2 x J � 1/2 x B x J+1/2 x J+3/2 13

  15. Boundary Treatment in 1-D • The cell averages w J ( t ) will not be evolved • To evolve the cell averages w J − 1 ( t ) we need: – the numerical flux H J − 1 2 ( t ) – the point values w + 2 ( t ) J − 1 w J � 1 Moving Boundary + w J � 1/2 x B x J � 5/2 x J � 3/2 x J � 1/2 x J+1/2 x J+3/2 14

  16. Solid Wall Extrapolation The solid wall extrapolation of the solution values in cell ( J − 1) , � � E J − 1 − ρ J − 1 u 2 u J − 1 = ( ρu ) J − 1 J − 1 ρ J − 1 , , p J − 1 = ( γ − 1) ρ J − 1 2 To obtain the ”missing” ghost values: � � � � ρ d 2 x B ( t ) ∂p x = x B ( t ) = γp � � � � x = x B ( t ) = − p x x = x B ( t ) , � � � � dt 2 ∂ρ ρ x = x B ( t ) w J � 1 w gh + w J � 1/2 x B x J � 5/2 x J � 3/2 x J � 1/2 x J+1/2 x J+3/2 15

  17. Solid Wall Extrapolation • Second-Order Approximation: · d 2 x B ( t ) ρ J − 1 + ρ gh = − p gh − p J − 1 dt 2 2 ∆ x p gh − p J − 1 = γ · p gh + p J − 1 ρ gh − ρ J − 1 ρ gh + ρ J − 1 • First-Order Approximation: ρ gh := ρ J − 1 , u gh := 2 ˙ x B ( t ) − u J − 1 , p gh := p J − 1 x B ( t ) : velocity of the wall at time t ˙ 16

  18. Phase Space Interpolation Once w + if u ∗ > 0 then are available, we J − 1 � w ∗ , 2 if u ∗ − c ∗ < 0 compute the slopes ( w x ) J − 1 w + 2 = J − 1 w J − 1 , otherwise using else � w ∗ , 2 , w J − 1 and w + w − if u ∗ + c ∗ > 0 w + J − 3 J − 1 2 = 2 J − 1 w gh , otherwise w � J � 1 ρ w J � 3/2 * u Moving Boundary * p ρ ρ * J−1 gh + w J � 1/2 u u gh J−1 p p gh J−1 x J � 5/2 x J � 3/2 x J � 1/2 x B x J+1/2 x J+3/2 17

  19. Solution of the RP – A Very Simple Structure • If u gh < u J − 1 , the solution consists of three constant states, connected by two shock waves. The intermediate state is equal to: p ∗ = p J − 1   � � � 2 x B ( t ) − u J − 1 ) 2 + ( γ + 1) ρ J − 1 ( ˙ 4 c J − 1  1 +  1 + 4 ( γ + 1) ( ˙ x B ( t ) − u J − 1 ) ( γ − 1) p J − 1 + ( γ + 1) p ∗ u ∗ = ˙ x B ( t ) , ρ ∗ = ρ J − 1 ( γ + 1) p J − 1 + ( γ − 1) p ∗ • If u gh > u J − 1 , the solution consists of three constant states, connected by two rarefaction waves.The intermediate state is given by: � � 2 γ/ ( γ − 1) 1 − ( γ − 1) ( ˙ x B ( t ) − u J − 1 ) p ∗ = p J − 1 2 c J − 1 � p ∗ � 1 /γ u ∗ = ˙ x B ( t ) , ρ ∗ = ρ J − 1 p J − 1 18

  20. Time Evolution 2 ( t ) − H j − 1 2 ( t ) H j + 1 d dt w j ( t ) = − : w j ( t ) → w j ( t + ∆ t ) ∆ x • If x B ( t + ∆ t ) ∈ C J , the evolution step is completed. • If x B ( t + ∆ t ) ∈ C J − 1 , then – Cell J − 1 becomes the new boundary cell – Cell J turns into an external one – The computed values w J − 1 ( t + ∆ t ) will not be used any more J − 1 t W J � 1 t+ � t t x x J � 3/2 x J � 1/2 x J+1/2 19

  21. • If x B ( t + ∆ t ) ∈ C J +1 , then – Cell ( J + 1) becomes a new boundary cell – Cell J turns into an internal one – We use the phase space interpolation between ( ρ J − 1 , u J − 1 , p J − 1 ) and ( ρ gh , u gh , p gh ) to obtain ( ρ ∗ , u ∗ , p ∗ ) and then w J ( t + ∆ t ) := w ∗ ∈ t W J t+ � t t x x J � 1/2 x J+1/2 x J+3/2 20

Recommend


More recommend