similarity problem for indefinite sturm liouville
play

Similarity problem for indefinite SturmLiouville operators Mark - PowerPoint PPT Presentation

Similarity problem for indefinite SturmLiouville operators Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964997) Institute of Applied Mathematics and Mechanics, Donetsk, Ukarine Dubrovnik 11 May, 2009


  1. Similarity problem for indefinite Sturm–Liouville operators Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Institute of Applied Mathematics and Mechanics, Donetsk, Ukarine Dubrovnik 11 May, 2009 Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  2. Consider the differential expression − y ′′ ( x ) + q ( x ) y ( x ) = λ r ( x ) y ( x ) , x ∈ R . (1) q , r are real functions, q , r ∈ L 1 l oc ( R ) , | r | > 0 a.e. on R . Define the maximal operator � � − d 2 1 L := d x 2 + q ( x ) , D ( L ) = D min , (2) r ( x ) If r ( x ) > 0 a.e on R , then L is symmetric in a Hilbert space L 2 ( R , r ( x ) d x ) . If r changes its sign, then L is not symmetric in a Hilbert space, but it is symmetric a Krein space Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  3. Consider the differential expression − y ′′ ( x ) + q ( x ) y ( x ) = λ r ( x ) y ( x ) , x ∈ R . (1) q , r are real functions, q , r ∈ L 1 l oc ( R ) , | r | > 0 a.e. on R . Define the maximal operator � � − d 2 1 L := d x 2 + q ( x ) , D ( L ) = D min , (2) r ( x ) If r ( x ) > 0 a.e on R , then L is symmetric in a Hilbert space L 2 ( R , r ( x ) d x ) . If r changes its sign, then L is not symmetric in a Hilbert space, but it is symmetric a Krein space Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  4. Consider the differential expression − y ′′ ( x ) + q ( x ) y ( x ) = λ r ( x ) y ( x ) , x ∈ R . (1) q , r are real functions, q , r ∈ L 1 l oc ( R ) , | r | > 0 a.e. on R . Define the maximal operator � � − d 2 1 L := d x 2 + q ( x ) , D ( L ) = D min , (2) r ( x ) If r ( x ) > 0 a.e on R , then L is symmetric in a Hilbert space L 2 ( R , r ( x ) d x ) . If r changes its sign, then L is not symmetric in a Hilbert space, but it is symmetric a Krein space Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  5. Consider the differential expression − y ′′ ( x ) + q ( x ) y ( x ) = λ r ( x ) y ( x ) , x ∈ R . (1) q , r are real functions, q , r ∈ L 1 l oc ( R ) , | r | > 0 a.e. on R . Define the maximal operator � � − d 2 1 L := d x 2 + q ( x ) , D ( L ) = D min , (2) r ( x ) If r ( x ) > 0 a.e on R , then L is symmetric in a Hilbert space L 2 ( R , r ( x ) d x ) . If r changes its sign, then L is not symmetric in a Hilbert space, but it is symmetric a Krein space Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  6. J-nonnegative operators In L 2 ( R , | r | ) , consider the operator � � − d 2 1 A := d x 2 + q ( x ) , D ( A ) = D min , (3) | r ( x ) | A = JL , ( Jf )( x ) := ( sgn x ) f ( x ) , J = J ∗ = J − 1 . Hypothesis: A = A ∗ ≥ 0 r ( x ) = ( sgn x ) | r ( x ) | , i.e., L is J -nonnegative and J -self-adjoint in L 2 ( R , | r | ) Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  7. J-nonnegative operators In L 2 ( R , | r | ) , consider the operator � � − d 2 1 A := d x 2 + q ( x ) , D ( A ) = D min , (3) | r ( x ) | A = JL , ( Jf )( x ) := ( sgn x ) f ( x ) , J = J ∗ = J − 1 . Hypothesis: A = A ∗ ≥ 0 r ( x ) = ( sgn x ) | r ( x ) | , i.e., L is J -nonnegative and J -self-adjoint in L 2 ( R , | r | ) Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  8. J-nonnegative operators In L 2 ( R , | r | ) , consider the operator � � − d 2 1 A := d x 2 + q ( x ) , D ( A ) = D min , (3) | r ( x ) | A = JL , ( Jf )( x ) := ( sgn x ) f ( x ) , J = J ∗ = J − 1 . Hypothesis: A = A ∗ ≥ 0 r ( x ) = ( sgn x ) | r ( x ) | , i.e., L is J -nonnegative and J -self-adjoint in L 2 ( R , | r | ) Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  9. J-nonnegative operators In L 2 ( R , | r | ) , consider the operator � � − d 2 1 A := d x 2 + q ( x ) , D ( A ) = D min , (3) | r ( x ) | A = JL , ( Jf )( x ) := ( sgn x ) f ( x ) , J = J ∗ = J − 1 . Hypothesis: A = A ∗ ≥ 0 r ( x ) = ( sgn x ) | r ( x ) | , i.e., L is J -nonnegative and J -self-adjoint in L 2 ( R , | r | ) Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  10. J-nonnegative operators In L 2 ( R , | r | ) , consider the operator � � − d 2 1 A := d x 2 + q ( x ) , D ( A ) = D min , (3) | r ( x ) | A = JL , ( Jf )( x ) := ( sgn x ) f ( x ) , J = J ∗ = J − 1 . Hypothesis: A = A ∗ ≥ 0 r ( x ) = ( sgn x ) | r ( x ) | , i.e., L is J -nonnegative and J -self-adjoint in L 2 ( R , | r | ) Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  11. J-nonnegative operators In L 2 ( R , | r | ) , consider the operator � � − d 2 1 A := d x 2 + q ( x ) , D ( A ) = D min , (3) | r ( x ) | A = JL , ( Jf )( x ) := ( sgn x ) f ( x ) , J = J ∗ = J − 1 . Hypothesis: A = A ∗ ≥ 0 r ( x ) = ( sgn x ) | r ( x ) | , i.e., L is J -nonnegative and J -self-adjoint in L 2 ( R , | r | ) Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  12. Critical point ∞ σ ( L ) is discrete: [Beals’ 1977, 1985], [Pyatkov’ 1984, 1989, ...] operators with continuous spectra: [ ´ Curgus, Langer’ 1989] ∞ is regular if r ( x ) = ( sgn x ) p ± ( x ) | x | β ± , ± x ∈ ( 0 , δ ) , with some δ > 0, β ± > − 1, and positive functions p + ∈ C 1 [ 0 , δ ] , p − ∈ C 1 [ − δ, 0 ] ∞ may be singular [Volkmer’ 1996] examples [Fleige’ 1996,1998], [Abasheeva, Pyatkov’ 1997], [Parfenov’ 2003] Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  13. Critical point ∞ σ ( L ) is discrete: [Beals’ 1977, 1985], [Pyatkov’ 1984, 1989, ...] operators with continuous spectra: [ ´ Curgus, Langer’ 1989] ∞ is regular if r ( x ) = ( sgn x ) p ± ( x ) | x | β ± , ± x ∈ ( 0 , δ ) , with some δ > 0, β ± > − 1, and positive functions p + ∈ C 1 [ 0 , δ ] , p − ∈ C 1 [ − δ, 0 ] ∞ may be singular [Volkmer’ 1996] examples [Fleige’ 1996,1998], [Abasheeva, Pyatkov’ 1997], [Parfenov’ 2003] Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  14. Critical point ∞ σ ( L ) is discrete: [Beals’ 1977, 1985], [Pyatkov’ 1984, 1989, ...] operators with continuous spectra: [ ´ Curgus, Langer’ 1989] ∞ is regular if r ( x ) = ( sgn x ) p ± ( x ) | x | β ± , ± x ∈ ( 0 , δ ) , with some δ > 0, β ± > − 1, and positive functions p + ∈ C 1 [ 0 , δ ] , p − ∈ C 1 [ − δ, 0 ] ∞ may be singular [Volkmer’ 1996] examples [Fleige’ 1996,1998], [Abasheeva, Pyatkov’ 1997], [Parfenov’ 2003] Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  15. Critical point ∞ σ ( L ) is discrete: [Beals’ 1977, 1985], [Pyatkov’ 1984, 1989, ...] operators with continuous spectra: [ ´ Curgus, Langer’ 1989] ∞ is regular if r ( x ) = ( sgn x ) p ± ( x ) | x | β ± , ± x ∈ ( 0 , δ ) , with some δ > 0, β ± > − 1, and positive functions p + ∈ C 1 [ 0 , δ ] , p − ∈ C 1 [ − δ, 0 ] ∞ may be singular [Volkmer’ 1996] examples [Fleige’ 1996,1998], [Abasheeva, Pyatkov’ 1997], [Parfenov’ 2003] Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  16. Critical point ∞ σ ( L ) is discrete: [Beals’ 1977, 1985], [Pyatkov’ 1984, 1989, ...] operators with continuous spectra: [ ´ Curgus, Langer’ 1989] ∞ is regular if r ( x ) = ( sgn x ) p ± ( x ) | x | β ± , ± x ∈ ( 0 , δ ) , with some δ > 0, β ± > − 1, and positive functions p + ∈ C 1 [ 0 , δ ] , p − ∈ C 1 [ − δ, 0 ] ∞ may be singular [Volkmer’ 1996] examples [Fleige’ 1996,1998], [Abasheeva, Pyatkov’ 1997], [Parfenov’ 2003] Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

  17. Critical point ∞ σ ( L ) is discrete: [Beals’ 1977, 1985], [Pyatkov’ 1984, 1989, ...] operators with continuous spectra: [ ´ Curgus, Langer’ 1989] ∞ is regular if r ( x ) = ( sgn x ) p ± ( x ) | x | β ± , ± x ∈ ( 0 , δ ) , with some δ > 0, β ± > − 1, and positive functions p + ∈ C 1 [ 0 , δ ] , p − ∈ C 1 [ − δ, 0 ] ∞ may be singular [Volkmer’ 1996] examples [Fleige’ 1996,1998], [Abasheeva, Pyatkov’ 1997], [Parfenov’ 2003] Mark Malamud (joint work with I.Karabash and A.Kostenko J. Diff. Eqs. 246 (2009), 964–997) Similarity problem for indefinite SL operators

Recommend


More recommend