Theorem 5 2 t log n then it admits exactly one integral solution. If k the referee recovers the y i 1 i 2 i 3 ’s and computes the output 11 The referee computes: It verifies: Proof sketch b i 1 , i 2 , i 3 = a 1 i 1 , i 2 , i 3 + · · · + a 5 i 1 , i 2 , i 3 y i 1 , i 2 , i 3 ≥ 0 ∑ y i 1 , i 2 , i 3 = n ( k − ( i 1 + i 2 + i 3 )) y i 1 , i 2 , i 3 + ( i 1 + 1 ) y i 1 + 1 , i 2 , i 3 +( i 2 + 1 ) y i 1 , i 2 + 1 , i 3 + ( i 3 + 1 ) y i 1 , i 2 , i 3 + 1 = b i 1 , i 2 , i 3
11 It verifies: The referee computes: Proof sketch b i 1 , i 2 , i 3 = a 1 i 1 , i 2 , i 3 + · · · + a 5 i 1 , i 2 , i 3 y i 1 , i 2 , i 3 ≥ 0 ∑ y i 1 , i 2 , i 3 = n ( k − ( i 1 + i 2 + i 3 )) y i 1 , i 2 , i 3 + ( i 1 + 1 ) y i 1 + 1 , i 2 , i 3 +( i 2 + 1 ) y i 1 , i 2 + 1 , i 3 + ( i 3 + 1 ) y i 1 , i 2 , i 3 + 1 = b i 1 , i 2 , i 3 Theorem If k ≥ 5 2 t log n then it admits exactly one integral solution. → the referee recovers the y i 1 , i 2 , i 3 ’s and computes the output
Decision tree complexity and log-rank conjecture
Conjecture log c rank M F D 2 F For some absolute constant c: log rank M F 12 Log-rank conjecture F : { 0 , 1 } n × { 0 , 1 } n → { 0 , 1 } Proposition ([MS82]) Let M F ∈ { 0 , 1 } n × n be the communication matrix: M F ( x , y ) = F ( x , y ) . log rank M F ≤ D 2 ( F )
12 For some absolute constant c: Log-rank conjecture F : { 0 , 1 } n × { 0 , 1 } n → { 0 , 1 } Proposition ([MS82]) Let M F ∈ { 0 , 1 } n × n be the communication matrix: M F ( x , y ) = F ( x , y ) . log rank M F ≤ D 2 ( F ) Conjecture log rank M F ≤ D 2 ( F ) ≤ log c rank M F
0 1 n 0 1 n 0 1 is an AND function if: Examples: Equality x y y , Hamming d x y GAP d x MOD 2 x Interests: • Connections with Decision Tree complexity y , InnerProduct x y mon f [BdW01] • For AND functions: rank M F [BC99] mon f • For XOR functions: rank M F y , etc. 13 NOR x Disjointness x y y , NOR x y f x F x y • A function F XOR and AND functions • A function F : { 0 , 1 } n × { 0 , 1 } n → { 0 , 1 } is an XOR function if: F ( x , y ) = f ( x ⊕ y ) for some f : { 0 , 1 } n → { 0 , 1 }
0 1 n Examples: Equality x y y , Hamming d x y GAP d x MOD 2 x Interests: • Connections with Decision Tree complexity 13 mon f [BdW01] • For AND functions: rank M F [BC99] mon f • For XOR functions: rank M F y , etc. Disjointness x y y , InnerProduct x y NOR x y , NOR x 0 1 for some f XOR and AND functions • A function F : { 0 , 1 } n × { 0 , 1 } n → { 0 , 1 } is an XOR function if: F ( x , y ) = f ( x ⊕ y ) • A function F : { 0 , 1 } n × { 0 , 1 } n → { 0 , 1 } is an AND function if: F ( x , y ) = f ( x ∧ y )
0 1 n Interests: • Connections with Decision Tree complexity 13 • For XOR functions: rank M F for some f 0 1 mon f [BdW01] • For AND functions: rank M F [BC99] mon f XOR and AND functions • A function F : { 0 , 1 } n × { 0 , 1 } n → { 0 , 1 } is an XOR function if: F ( x , y ) = f ( x ⊕ y ) • A function F : { 0 , 1 } n × { 0 , 1 } n → { 0 , 1 } is an AND function if: F ( x , y ) = f ( x ∧ y ) Examples: Equality ( x , y ) = NOR ( x ⊕ y ) , Hamming d ( x , y ) = GAP d ( x ⊕ y ) , Disjointness ( x , y ) = NOR ( x ∧ y ) , InnerProduct ( x , y ) = MOD 2 ( x ∧ y ) , etc.
0 1 n for some f 0 1 [BC99] 13 XOR and AND functions • A function F : { 0 , 1 } n × { 0 , 1 } n → { 0 , 1 } is an XOR function if: F ( x , y ) = f ( x ⊕ y ) • A function F : { 0 , 1 } n × { 0 , 1 } n → { 0 , 1 } is an AND function if: F ( x , y ) = f ( x ∧ y ) Examples: Equality ( x , y ) = NOR ( x ⊕ y ) , Hamming d ( x , y ) = GAP d ( x ⊕ y ) , Disjointness ( x , y ) = NOR ( x ∧ y ) , InnerProduct ( x , y ) = MOD 2 ( x ∧ y ) , etc. Interests: • For XOR functions: rank M F = mon f • For AND functions: rank M F = mon ⋆ f [BdW01] • Connections with Decision Tree complexity
A decision tree is an ordered tree where each internal node is labeled with a query, and each leaf is labeled with 0 or 1. x 3 x 2 x 1 x 1 x 2 0 1 0 1 0 1 14 Decision tree complexity
14 A decision tree is an ordered tree where each internal node is labeled with a 1 0 1 0 1 0 x 2 x 1 x 1 x 2 x 3 query, and each leaf is labeled with 0 or 1. Decision tree complexity Input: x 1 x 2 x 3 = 011 on a regular decision tree DT ( f ) , RDT ( f ) and QDT ( f )
14 A decision tree is an ordered tree where each internal node is labeled with a 1 0 1 0 1 0 x 2 x 2 query, and each leaf is labeled with 0 or 1. Decision tree complexity x 1 ⊕ x 2 ⊕ x 3 x 1 ⊕ x 2 x 2 ⊕ x 3 Input: x 1 x 2 x 3 = 011 on a parity decision tree DT ⊕ ( f ) , RDT ⊕ ( f ) and QDT ⊕ ( f )
14 A decision tree is an ordered tree where each internal node is labeled with a 1 0 1 0 1 0 x 2 x 1 query, and each leaf is labeled with 0 or 1. Decision tree complexity x 2 ∧ x 3 x 1 ∧ x 3 x 1 ∧ x 3 Input: x 1 x 2 x 3 = 011 on a conjunctive decision tree DT ∧ ( f ) , RDT ∧ ( f ) and QDT ∧ ( f )
log c mon f D 2 F 2 DT log c mon D 2 F Conjecture f f 2 DT f • AND function: log mon 15 f • XOR function: log mon f • Log-rank conjecture for decision trees: • Communication and Decision Tree complexities are polynomially related Connections Proposition ([ZS10]) For any XOR function F ( x , y ) = f ( x ⊕ y ) : D 2 ( F ) ≤ 2 · DT ⊕ ( f ) For any AND function F ( x , y ) = f ( x ∧ y ) : D 2 ( F ) ≤ 2 · DT ∧ ( f )
log c mon f D 2 F log c mon D 2 F 15 f f f 2 DT f • AND function: log mon 2 DT • XOR function: log mon f • Log-rank conjecture for decision trees: • Communication and Decision Tree complexities are polynomially related Connections Proposition ([ZS10]) For any XOR function F ( x , y ) = f ( x ⊕ y ) : D 2 ( F ) ≤ 2 · DT ⊕ ( f ) For any AND function F ( x , y ) = f ( x ∧ y ) : D 2 ( F ) ≤ 2 · DT ∧ ( f ) Conjecture
• Log-rank conjecture for decision trees: • Communication and Decision Tree complexities are polynomially related 15 Connections Proposition ([ZS10]) For any XOR function F ( x , y ) = f ( x ⊕ y ) : D 2 ( F ) ≤ 2 · DT ⊕ ( f ) For any AND function F ( x , y ) = f ( x ∧ y ) : D 2 ( F ) ≤ 2 · DT ∧ ( f ) Conjecture • XOR function: log mon ( f ) ≤ D 2 ( F ) ≤ 2 · DT ⊕ ( f ) ≤ log c mon ( f ) • AND function: log mon ⋆ ( f ) ≤ D 2 ( F ) ≤ 2 · DT ∧ ( f ) ≤ log c mon ⋆ ( f )
16 n 1 [ZS09, BdW01, Raz03] Quantum n Randomized symmetric f : XOR functions Deterministic AND functions Symmetric XOR and AND functions Communication complexity 1 of (nontrivial) XOR and AND functions, for ( ( )) Θ ( n ) Θ ( n − t ( f )) 1 + log n − t ( f ) Θ † ( ( )) Θ ( r ( f )) ( n − t ( f )) 1 + log n − t ( f ) Θ ⋆ (√ ) Θ ( r ( f )) n · ℓ 0 ( f ) + ℓ 1 ( f )
Result: Communication and Decision Tree complexities are polynomially 17 n Regular Parity Conjunctive Deterministic related for symmetric functions. Quantum n Randomized Symmetric functions Decision tree complexities 2 of (nontrivial) symmetric functions: ( ( )) Θ ( n ) Θ ( n ) Θ ( n − t ( f )) 1 + log n − t ( f ) Θ † ( ( )) Θ ( n ) Θ ( r ( f )) ( n − t ( f )) 1 + log n − t ( f ) (√ ) Θ ⋆ (√ ) Θ n · ℓ ( f ) Θ ( r ( f )) n · ℓ 0 ( f ) + ℓ 1 ( f ) 2 [ZS09, BdW01, Raz03, BBC + 01]
17 n Regular Parity Conjunctive Deterministic related for symmetric functions. Quantum n Randomized Symmetric functions Decision tree complexities 2 of (nontrivial) symmetric functions: ( ( )) Θ ( n ) Θ ( n ) Θ ( n − t ( f )) 1 + log n − t ( f ) Θ † ( ( )) Θ ( n ) Θ ( r ( f )) ( n − t ( f )) 1 + log n − t ( f ) (√ ) Θ ⋆ (√ ) Θ n · ℓ ( f ) Θ ( r ( f )) n · ℓ 0 ( f ) + ℓ 1 ( f ) Result: Communication and Decision Tree complexities are polynomially 2 [ZS09, BdW01, Raz03, BBC + 01]
Conclusion
• breaking the log n barrier Our contributions: functions p Future work: • other protocols for larger families of composed functions • log-rank conjecture for XOR and AND functions (using decision tree complexity?) 18 • first efficient simultaneous protocol for Sym ◦ Sym t • full characterization of the decision tree complexities of symmetric • efficient construction for Ramsey numbers over F n
Our contributions: functions p Future work: • other protocols for larger families of composed functions • log-rank conjecture for XOR and AND functions (using decision tree complexity?) 18 • first efficient simultaneous protocol for Sym ◦ Sym t • full characterization of the decision tree complexities of symmetric • efficient construction for Ramsey numbers over F n • breaking the log n barrier
19 Anil Ada, Arkadev Chattopadhyay, Omar Fawzi, and Phuong Nguyen. computational complexity , 21(2):311–358, 2012. Eric Blais, Joshua Brody, and Kevin Matulef. J. ACM , 48(4):778–797, July 2001. de Wolf. Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald of Computing , STOC ’96, pages 20–29, New York, NY, USA, 1996. ACM. In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory Noga Alon, Yossi Matias, and Mario Szegedy. Computational Complexity , 24(3):645–694, 2015. References I The NOF multiparty communication complexity of composed functions. The space complexity of approximating the frequency moments. Quantum lower bounds by polynomials. Property testing lower bounds via communication complexity.
Anna Bernasconi and Bruno Codenotti. IEEE Transactions on Computers , 48(3):345–351, 1999. Harry Buhrman and Ronald de Wolf. In Proceedings of the 16th Annual Conference on Computational Complexity , CCC ’01, pages 120–, Washington, DC, USA, 2001. IEEE Computer Society. László Babai, Anna Gál, Peter G. Kimmel, and Satyanarayana V. Lokam. SIAM J. Comput. , 33(1):137–166, January 2004. László Babai, Peter G. Kimmel, and Satyanarayana V. Lokam. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995. 20 References II Spectral analysis of boolean functions as a graph eigenvalue problem. Communication complexity lower bounds by polynomials. Communication complexity of simultaneous messages. Simultaneous messages vs. communication , pages 361–372.
21 Paul Beame, Toniann Pitassi, and Nathan Segerlind. Learning , ICML ’04, pages 24–, New York, NY, USA, 2004. ACM. In Proceedings of the Twenty-first International Conference on Machine Vincent Conitzer and Tuomas Sandholm. Computing , STOC ’83, pages 94–99, New York, NY, USA, 1983. ACM. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Computational Complexity , 4(4):350–366, 1994. Richard Beigel and Jun Tarui. SIAM J. Comput. , 37(3):845–869, 2007. References III Lower bounds for Lovász–Schrijver systems and beyond follow from multiparty communication complexity. On ACC. Multi-party protocols. Communication complexity as a lower bound for learning in games.
22 Arkadev Chattopadhyay and Michael E. Saks. Cambridge Books Online. Cambridge University Press, 2005. In Bridget S. Webb, editor, Surveys in Combinatorics 2005 , pages 1–28. Ben Green. SIAMJDiscreteMath , 6(1):110–123, 1993. Fan R. K. Chung and Prasad Tetali. Dagstuhl–Leibniz-Zentrum fuer Informatik. pages 596–603, Dagstuhl, Germany, 2014. Schloss volume 28 of Leibniz International Proceedings in Informatics (LIPIcs) , Optimization. Algorithms and Techniques (APPROX/RANDOM 2014) , Moore, editors, Approximation, Randomization, and Combinatorial In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and Cristopher References IV The power of super-logarithmic number of players. Communication complexity and quasi randomness. Finite field models in additive combinatorics.
Vince Grolmusz. Information and Computation , 112:51–54, 1994. Johan Håstad and Mikael Goldmann. Computational Complexity , 1(2):113–129, 1991. Michael T. Lacey and William McClain. Online Journal of Analytic Combinatorics , 2007. Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. In Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing , STOC ’95, pages 103–111, New York, NY, USA, 1995. ACM. 23 References V The BNS lower bound for multi-party protocols is nearly optimal. On the power of small-depth threshold circuits. On an argument of Shkredov on two-dimensional corners. On data structures and asymmetric communication complexity.
24 A A Razborov. J. ACM , 61(1):2:1–2:32, January 2014. Ryan Williams. In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing , STOC ’82, pages 330–337, New York, NY, USA, 1982. ACM. Noam Nisan and Ilya Segal. Izvestiya: Mathematics , 67(1):145, 2003. Kurt Mehlhorn and Erik M. Schmidt. Journal of Economic Theory , 129:192–224, 2006. References VI Las Vegas is better than determinism in VLSI and distributed computing. The communication requirements of efficient allocations and supporting prices. Quantum communication complexity of symmetric predicates. Nonuniform acc circuit lower bounds.
Andrew Chi-Chih Yao. In 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume II , pages 619–627, 1990. Zhiqiang Zhang and Yaoyun Shi. Quantum Info. Comput. , 9(3):255–263, March 2009. Zhiqiang Zhang and Yaoyun Shi. Theor. Comput. Sci. , 411(26-28):2612–2618, June 2010. 25 References VII On ACC and threshold circuits. Communication complexities of symmetric XOR functions. On the parity complexity measures of boolean functions.
• log-rank method 26 Equality function Equality ( x 1 , . . . , x k ) = 1 ⇔ x 1 = · · · = x k D 2 ( Equality ) = Ω( n ) R || 2 ( Equality ) = O ( 1 ) • Alice and Bob test x · r = y · r mod 2 for two random r ∈ { 0 , 1 } n D || k ( Equality ) = O ( 1 ) when k > 2 • Player 1 checks x 2 = · · · = x k • Player 2 checks x 1 = x 3 = · · · = x k
and each bottom gate is an AND gate of fan-in k SYM AND AND s k k 27 ACC 0 and Sym + Sym + ( s , k ) = depth-2 circuits whose top gate is a symmetric gate of fan-in s , · · · • ACC 0 ⊂ SYM + ( 2 polylog n , polylog n ) [Yao90, BT94] • f is computed by a SYM + ( s , k − 1 ) circuit ⇒ for any partition of the input between k players, there is a protocol of cost O ( k log s ) computing f
0 f 1 f • r f 28 • f min p f i f i 1 for i p n p n 2 n 1 min p f i f i 2 for i p n p 2 p f i f n 2 for i f p f x depends only on x . Hence f 0 n 0 1 • t f min p f p 1 • min p n 2 f i f n 2 for i p n 2 • min p n 2 Symmetric XOR and AND functions F ( x , y ) = f ( x ⊕ y ) is symmetric iff f is symmetric
0 f 1 f • r f p f min p f i f i 1 for i p n 28 1 p min p f i f i 2 for i p n p 2 • f n 2 for i n 2 n min p • t f min p f p 1 f p • n 2 f i f n 2 for i p n 2 • min p n 2 f i Symmetric XOR and AND functions F ( x , y ) = f ( x ⊕ y ) is symmetric iff f is symmetric → f ( x ) depends only on | x | . Hence f : { 0 , . . . , n } → { 0 , 1 }
28 Symmetric XOR and AND functions F ( x , y ) = f ( x ⊕ y ) is symmetric iff f is symmetric → f ( x ) depends only on | x | . Hence f : { 0 , . . . , n } → { 0 , 1 } • t ( f ) = min { p : f ( p − 1 ) ̸ = f ( p ) } • ℓ 0 ( f ) = min { p ≤ n / 2 : f ( i ) = f ( n / 2 ) for i ∈ [ p , n / 2 ] } • ℓ 1 ( f ) = min { p ≤ n / 2 : f ( i ) = f ( n / 2 ) for i ∈ [ n / 2 , n − p ] } • ℓ ( f ) = min { p : f ( i ) = f ( i + 1 ) for i ∈ [ p , n − p − 1 ] } • r ( f ) = min { p : f ( i ) = f ( i + 2 ) for i ∈ [ p , n − p − 2 ] }
Ramsey numbers and Eval G
• R k Eval G • D k Eval G connections to Ramsey theory Communication complexity: 1 since x 1 x k 0 x 1 x 2 x k 29 Eval G For any Abelian group G and x 1 , . . . , x k ∈ G : Eval G ( x 1 , . . . , x k ) = 1 ⇔ x 1 + · · · + x k = 0
29 Communication complexity: Eval G For any Abelian group G and x 1 , . . . , x k ∈ G : Eval G ( x 1 , . . . , x k ) = 1 ⇔ x 1 + · · · + x k = 0 • R || k ( Eval G ) = O ( 1 ) since x 1 + · · · + x k = 0 ⇔ x 1 = − ( x 2 · · · + x k ) • D k ( Eval G ) → connections to Ramsey theory
• c k G = min # of colors to avoid monochromatic k -dim corner in G k • r k G = size of largest subset of G k without any k -dim corner log c k G 1 Eval G log c k G k -dimensional corner in G k : Ramsey numbers: Chandra, Furst and Lipton [CFL83]: D k k 30 Ramsey numbers ( x 1 , x 2 , . . . , x k ) , ( x 1 + λ, x 2 , . . . , x k ) , ( x 1 , x 2 + λ, . . . , x k ) , . . . , ( x 1 , x 2 , . . . , x k + λ )
log c k G 1 Eval G log c k G k -dimensional corner in G k : Ramsey numbers: Chandra, Furst and Lipton [CFL83]: D k k 30 Ramsey numbers ( x 1 , x 2 , . . . , x k ) , ( x 1 + λ, x 2 , . . . , x k ) , ( x 1 , x 2 + λ, . . . , x k ) , . . . , ( x 1 , x 2 , . . . , x k + λ ) • c ∠ k ( G ) = min # of colors to avoid monochromatic k -dim corner in G k • r ∠ k ( G ) = size of largest subset of G k without any k -dim corner
k -dimensional corner in G k : Ramsey numbers: Chandra, Furst and Lipton [CFL83]: 30 Ramsey numbers ( x 1 , x 2 , . . . , x k ) , ( x 1 + λ, x 2 , . . . , x k ) , ( x 1 , x 2 + λ, . . . , x k ) , . . . , ( x 1 , x 2 , . . . , x k + λ ) • c ∠ k ( G ) = min # of colors to avoid monochromatic k -dim corner in G k • r ∠ k ( G ) = size of largest subset of G k without any k -dim corner log ( c ∠ k ( G )) ≤ D k + 1 ( Eval G ) ≤ k + log ( c ∠ k ( G ))
Chandra, Furst and Lipton [CFL83]: 31 Connections log ( c ∠ k ( G )) ≤ D k + 1 ( Eval G ) ≤ k + log ( c ∠ k ( G ))
• D 3 Eval n • an explicit large corner free set over 2 [ACFN15] p log 2 n p p log n when k • the first explicit large corner-free set over C k 2 p k • c k n p 2 k 2 1 n Our result: n p , of size p nk p log 3 n [CS14] 32 p 1 [LM07] p : • the proofs are easier and cleaner • they can be adapted to any other group [Gre05] Prior work: [ACFN15] p • c k n 2 2 n 2 k 2 n k 1 Ramsey numbers and Eval F n Motivations for G = F n p ∈ Sym ◦ Sym p • Eval F n
• the first explicit large corner-free set over C k 2 p k 32 p k 2 p : • the proofs are easier and cleaner • they can be adapted to any other group [Gre05] p nk Prior work: p , of size n Our result: [ACFN15] Ramsey numbers and Eval F n Motivations for G = F n p ∈ Sym ◦ Sym p • Eval F n • D 3 ( Eval F n p ) = ω ( 1 ) [LM07] ( 2 n / 2 k − 2 n k + 1 ) • c ∠ k ( F n 2 ) ≤ O • an explicit large corner free set over F n 2 [ACFN15] p ) ≤ 2 O ( p log 2 n ) p O ( p log n ) when k > 1 + p log ( 3 n ) [CS14] • c ∠ k ( F n
32 p p nk p : • the proofs are easier and cleaner • they can be adapted to any other group [Gre05] p , of size Our result: Prior work: [ACFN15] Ramsey numbers and Eval F n Motivations for G = F n p ∈ Sym ◦ Sym p • Eval F n • D 3 ( Eval F n p ) = ω ( 1 ) [LM07] ( 2 n / 2 k − 2 n k + 1 ) • c ∠ k ( F n 2 ) ≤ O • an explicit large corner free set over F n 2 [ACFN15] p ) ≤ 2 O ( p log 2 n ) p O ( p log n ) when k > 1 + p log ( 3 n ) [CS14] • c ∠ k ( F n • the first explicit large corner-free set over F n C k 2 p k + k 2
k is seen as a k • n i c M 0 N i n i c M is a corner-free set. 1 i then S k C k 2 p k 33 1 0 k N i If k log n log 1 k p 1 and N i k i p p k n c p nk k 2 i n p For any c p Definitions: • M n p n matrix over p • d c c j Hamming distance between columns c and c j number of columns at distance i to c in M k p , N k 0 and N 0 N k 1 0 such that k i n : S k c M Results Our contribution: the first explicit large corner-free set in F n
0 N i n i c M is a corner-free set. 1 i then S k C k 2 p k 33 p N i If k log n log 1 1 k 1 and N i 0 i p p k n c p nk k 2 k i N k 0 such that For any c k p , N k 0 and N 0 k 1 k Definitions: i n : S k c M n p p Results Our contribution: the first explicit large corner-free set in F n • M ∈ ( F n p ) k is seen as a k × n matrix over F p • d ( c , c j ) = Hamming distance between columns c and c j • n i , c ( M ) = number of columns at distance i to c in M
1 i then S k C k 2 p k 33 1 k 2 p nk c n p k p i k and N i 1 p log 1 S k If k p Definitions: log n Results Our contribution: the first explicit large corner-free set in F n • M ∈ ( F n p ) k is seen as a k × n matrix over F p • d ( c , c j ) = Hamming distance between columns c and c j • n i , c ( M ) = number of columns at distance i to c in M For any c ∈ F k p , N k = 0 and N 0 , . . . , N k − 1 ≥ 0 such that ∑ k i = 0 N i = n : p ) k : ∀ i ∈ { 0 , . . . , k } , n i , c ( M ) = N i } c = { M ∈ ( F n is a corner-free set.
33 S k p nk n p k i 1 log n log p Definitions: Results Our contribution: the first explicit large corner-free set in F n • M ∈ ( F n p ) k is seen as a k × n matrix over F p • d ( c , c j ) = Hamming distance between columns c and c j • n i , c ( M ) = number of columns at distance i to c in M For any c ∈ F k p , N k = 0 and N 0 , . . . , N k − 1 ≥ 0 such that ∑ k i = 0 N i = n : p ) k : ∀ i ∈ { 0 , . . . , k } , n i , c ( M ) = N i } c = { M ∈ ( F n is a corner-free set. ⌈ ⌉ ) ( p − 1 ) i ⌊( k ⌋ If k ≥ and N i = then | S k c | ≥ ( ) C k 2 p k + k 2 1 + p − 1
The log n barrier and composed functions
34 Player 1 ( x 1 ) f g n g 3 g 2 g 1 k . . . n Player k ( x k ) Player 2 ( x 2 ) Composed functions Given f : { 0 , 1 } n → { 0 , 1 } and − → g = ( g 1 , . . . , g n ) where g i : { 0 , 1 } k → { 0 , 1 } : f ◦ − → g ( x 1 , . . . , x k ) = f ( . . . , g i ( x 1 , i , . . . , x k , i ) , . . . ) x 1 , 1 x 1 , 2 x 1 , 3 x 1 , n x 2 , 1 x 2 , 2 x 2 , 3 x 2 , n · · · x k , 1 x k , 2 x k , 3 x k , n
• most of the important functions: GIP 35 AND • major open problems still unknown for composed functions Sym Sym AND NOR Sym, DISJ Sym MAJ MAJ Sym, Sym MOD 2 Definitions: • very simple structure Motivations: Composed functions • f ◦ g if g 1 = · · · = g n • Symmetric = invariant under any permutation of the input • Any ◦ − − → Any, Any ◦ Any, Sym ◦ − − → Any, Sym ◦ Sym...
35 Definitions: • major open problems still unknown for composed functions • very simple structure Motivations: Composed functions • f ◦ g if g 1 = · · · = g n • Symmetric = invariant under any permutation of the input • Any ◦ − − → Any, Any ◦ Any, Sym ◦ − − → Any, Sym ◦ Sym... • most of the important functions: GIP = MOD 2 ◦ AND ∈ Sym ◦ Sym, MAJ ◦ MAJ ∈ Sym ◦ Sym, DISJ = NOR ◦ AND ∈ Sym ◦ Sym
log 2 n • D k f log 3 n • D k f log 3 n • D k f none of the functions in Sym 36 Comp [BGKL04] Any can break the log n barrier Any [ACFN15] Sym g for f g for f Sym g g AND [Gro94] Sym g for f g log n : When k Prior work Conjecture ([BKL95]): MAJ ◦ MAJ breaks the log n barrier
none of the functions in Sym 36 Any [ACFN15] Any can break the log n barrier Prior work Conjecture ([BKL95]): MAJ ◦ MAJ breaks the log n barrier When k = Ω( log n ) : ( ) • D k ( f ◦ g ) = O for f ◦ g ∈ Sym ◦ AND [Gro94] log 2 n ( ) • D || k ( f ◦ g ) = O for f ◦ g ∈ Sym ◦ Comp [BGKL04] log 3 n g ∈ Sym ◦ − − → k ( f ◦ − → for f ◦ − → ( ) • D || g ) = O log 3 n
36 Any [ACFN15] Any can break the log n barrier Prior work Conjecture ([BKL95]): MAJ ◦ MAJ breaks the log n barrier When k = Ω( log n ) : ( ) • D k ( f ◦ g ) = O for f ◦ g ∈ Sym ◦ AND [Gro94] log 2 n ( ) • D || k ( f ◦ g ) = O for f ◦ g ∈ Sym ◦ Comp [BGKL04] log 3 n g ∈ Sym ◦ − − → k ( f ◦ − → for f ◦ − → ( ) • D || g ) = O log 3 n → none of the functions in Sym ◦ − − →
0 1 k t n breaks the barrier 37 Player 2 ( x 2 ) MAJ • Conjecture : MAJ 0 1 • MAJ t f g n g 1 k Player k ( x k ) Player 1 ( x 1 ) . . . Composed functions of block-width t t · n x 1 , 1 x 1 , t x 1 , tn x 2 , 1 x 2 , t x 2 , tn · · · · · · x k , 1 x k , t x k , tn
37 Player 1 ( x 1 ) f . . . g n g 1 k Player k ( x k ) Player 2 ( x 2 ) Composed functions of block-width t t · n x 1 , 1 x 1 , t x 1 , tn x 2 , 1 x 2 , t x 2 , tn · · · · · · x k , 1 x k , t x k , tn • MAJ t : { 0 , 1 } k · t → { 0 , 1 } • Conjecture : MAJ ◦ MAJ √ n breaks the barrier
0 1 n g n where g i g i x 1 i Any p Any Any p Sym 38 p Given f 0 1 and g g 1 k g x 1 0 1 : f g n x k f x k i Any Any p f g 1 . . . Player k ( x k ) Player 2 ( x 2 ) Player 1 ( x 1 ) k Composed functions of block-width t t · n x 1 , 1 x 1 , t x 1 , tn x 2 , 1 x 2 , t x 2 , tn · · · · · · x k , 1 x k , t x k , tn { 0 , 1 } t ∼ F 2 t
0 1 n g n where g i g i x 1 i Any p Any Any p Sym 38 k g n f Given f 0 1 and g g 1 f p 0 1 : g 2 g x 1 x k f x k i Any Any p g 3 g 1 . . n Player k ( x k ) Player 2 ( x 2 ) Player 1 ( x 1 ) k . Composed functions of block-width t x 1 , 1 x 1 , 2 x 1 , 3 x 1 , n x 2 , 1 x 2 , 2 x 2 , 3 x 2 , n · · · x k , 1 x k , 2 x k , 3 x k , n F 2 t
38 Player 1 ( x 1 ) f g n g 3 g 2 g 1 k n Player 2 ( x 2 ) Player k ( x k ) . . . Composed functions of block-width t x 1 , 1 x 1 , 2 x 1 , 3 x 1 , n x 2 , 1 x 2 , 2 x 2 , 3 x 2 , n · · · x k , 1 x k , 2 x k , 3 x k , n F 2 t Given f : { 0 , 1 } n → { 0 , 1 } and − → g = ( g 1 , . . . , g n ) where g i : F k p → { 0 , 1 } : f ◦ − → g ( x 1 , . . . , x k ) = f ( . . . , g i ( x 1 , i , . . . , x k , i ) , . . . ) → Any ◦ − − → Any p , Any ◦ Any p , Sym ◦ Any p , . . .
log 3 n • D k f Any 2 [ACFN15] • D k f Any p and p New results for constant p : • D k f Sym p ( k • D k f Comp p ( k • MAJ MAJ t cannot break the barrier for constant t Sym polylog n ) 39 g g g Sym polylog n ) polylogn for f polylog n [CS14] polylogn for f g Sym g polylogn for f g Sym g for f g polylog n : When k Prior work Conjecture: MAJ ◦ MAJ √ log n breaks the log n barrier
• D k f Sym p ( k • D k f Comp p ( k • MAJ MAJ t cannot break the barrier for constant t g polylogn for f g Sym 39 polylog n ) New results for constant p : polylogn for f g Sym polylog n ) g Prior work Conjecture: MAJ ◦ MAJ √ log n breaks the log n barrier When k = Ω( polylog n ) : g ∈ Sym ◦ − − → k ( f ◦ − → for f ◦ − → ( ) • D || g ) = O log 3 n Any 2 [ACFN15] • D k ( f ◦ g ) = O ( polylogn ) for f ◦ g ∈ Sym ◦ − − → Any p and p ≤ polylog n [CS14]
39 New results for constant p : Prior work Conjecture: MAJ ◦ MAJ √ log n breaks the log n barrier When k = Ω( polylog n ) : g ∈ Sym ◦ − − → k ( f ◦ − → for f ◦ − → ( ) • D || g ) = O log 3 n Any 2 [ACFN15] • D k ( f ◦ g ) = O ( polylogn ) for f ◦ g ∈ Sym ◦ − − → Any p and p ≤ polylog n [CS14] • D || k ( f ◦ g ) = O ( polylogn ) for f ◦ g ∈ Sym ◦ Sym p ( k = polylog n ) • D || k ( f ◦ g ) = O ( polylogn ) for f ◦ g ∈ Sym ◦ Comp p ( k ≥ polylog n ) • MAJ ◦ MAJ t cannot break the barrier for constant t
40 1 1 2 1 0 0 0 2 1 0 1 2 2 0 0 3 0 0 3 1 0 1 0 2 0 Recovering the y i j ’s is enough since f and g are symmetric 0 2 3 2 g g g f 0 0 1 2 0 2 3 1 1 0 0 0 0 2 1 1 0 1 3 0 1 Proof sketch Symmetric f and g over F 3 : · · · y i , j = # columns with i one’s and j two’s
40 1 1 2 1 0 0 0 2 1 0 1 2 2 0 0 3 0 0 3 1 0 1 0 2 0 Recovering the y i j ’s is enough since f and g are symmetric 0 2 3 1 g g g f 0 0 1 2 0 2 3 2 1 1 0 0 0 2 1 0 1 0 1 3 0 Proof sketch Symmetric f and g over F 3 : · · · y i , j = # columns with i one’s and j two’s → y 0 , 0 = 1
40 1 1 2 1 0 0 0 2 1 0 1 2 2 0 0 3 0 0 3 1 0 1 0 2 0 Recovering the y i j ’s is enough since f and g are symmetric 0 2 3 1 g g g f 0 0 1 2 0 2 3 2 1 1 0 0 0 2 1 0 1 0 1 3 0 Proof sketch Symmetric f and g over F 3 : · · · y i , j = # columns with i one’s and j two’s → y 0 , 0 = 1 , y 1 , 0 = 2
40 1 1 2 1 0 0 0 2 1 0 1 2 2 0 0 3 0 0 3 1 0 1 0 2 0 Recovering the y i j ’s is enough since f and g are symmetric 0 2 3 1 g g g f 0 0 1 2 0 2 3 2 1 1 0 0 0 2 1 0 1 0 1 3 0 Proof sketch Symmetric f and g over F 3 : · · · y i , j = # columns with i one’s and j two’s → y 0 , 0 = 1 , y 1 , 0 = 2 , y 1 , 1 = 1
40 2 0 1 2 1 0 0 0 2 1 0 1 1 3 2 0 3 0 0 3 1 0 1 0 2 0 0 2 0 1 g g g f 0 0 1 2 0 2 2 3 1 0 0 0 3 1 0 1 1 1 0 2 Proof sketch Symmetric f and g over F 3 : · · · y i , j = # columns with i one’s and j two’s → y 0 , 0 = 1 , y 1 , 0 = 2 , y 1 , 1 = 1 , . . . Recovering the y i , j ’s is enough since f and g are symmetric
41 3 0 0 0 2 1 0 1 2 1 2 0 0 2 0 3 1 0 1 0 2 0 • Player 1 sends to the referee: a 1 • Players 2 to 5 do the same 1 0 1 3 0 1 2 0 2 3 2 1 1 0 0 1 1 0 0 2 0 0 3 0 2 0 1 1 Proof sketch i , j = # columns she sees with i one’s and j two’s → a 1 0 , 0 = 2 , a 1 1 , 0 = 1 , a 1 1 , 1 = 3 , . . .
41 3 0 0 0 2 1 0 1 2 1 2 0 0 2 0 3 1 0 1 0 2 0 • Player 1 sends to the referee: a 1 • Players 2 to 5 do the same 1 0 1 3 0 1 2 0 2 3 2 1 1 0 0 1 1 0 0 2 0 0 3 0 2 0 1 1 Proof sketch i , j = # columns she sees with i one’s and j two’s → a 1 0 , 0 = 2 , a 1 1 , 0 = 1 , a 1 1 , 1 = 3 , . . .
42 0 0 1 2 1 2 0 3 0 0 3 1 0 1 2 0 0 The referee computes: Note that: b i j k i j y i j i 1 y i 1 j j 1 y i j 1 1 2 0 0 0 1 2 0 2 3 2 1 1 1 0 3 1 0 1 3 0 1 2 1 0 0 2 0 1 0 0 2 0 Proof sketch b i , j = a 1 i , j + · · · + a 5 i , j
42 0 0 1 2 1 2 0 3 0 0 3 1 0 1 2 2 0 The referee computes: Note that: b i j k i j y i j i 1 y i 1 j j 1 y i j 1 0 1 0 0 0 1 2 0 2 3 2 1 1 1 0 3 0 1 1 3 0 1 2 1 0 0 2 0 1 0 0 2 0 Proof sketch b i , j = a 1 i , j + · · · + a 5 i , j • b 0 , 0 =
Recommend
More recommend