shape optimization for interface identification in
play

Shape optimization for interface identification in nonlocal models - PowerPoint PPT Presentation

Shape optimization for interface identification in nonlocal models Volker Schulz and Christian Vollmann www.alop.uni-trier.de Why nonlocal operators? Because of a wealth of application fields: fractional diffusion (Brockmann et al. 2008,


  1. Shape optimization for interface identification in nonlocal models Volker Schulz and Christian Vollmann www.alop.uni-trier.de

  2. Why nonlocal operators? Because of a wealth of application fields: • fractional diffusion (Brockmann et al. 2008, D’Elia and Gunzburger 2013, Harbir 2015,...) • peridynamics (Silling 2000, Du and Zhou 2010/11, D’Elia et al. 2016,...) • image processing (Gilboa and Osher 2009, Lou et al. 2010, Peyre et al. 2008,...) • cardiology (Cusimano et al. 2015,...) • machine learning (Rosasco et al. 2010,...) • finance (Lvendoskii et al. 2004,...) • growth models in economics (Augeraud-Veron et al. 2019 [survey], Frerick/Müller-Fürstenberger/Sachs/Somorowsky 2019,...) 1

  3. Why nonlocal operators? Because of a wealth of application fields: • fractional diffusion (Brockmann et al. 2008, D’Elia and Gunzburger 2013, Harbir 2015,...) • peridynamics (Silling 2000, Du and Zhou 2010/11, D’Elia et al. 2016,...) • image processing (Gilboa and Osher 2009, Lou et al. 2010, Peyre et al. 2008,...) • cardiology (Cusimano et al. 2015,...) • machine learning (Rosasco et al. 2010,...) • finance (Lvendoskii et al. 2004,...) • growth models in economics (Augeraud-Veron et al. 2019 [survey], Frerick/Müller-Fürstenberger/Sachs/Somorowsky 2019,...) Because of interesting structures: • full matrices lacking sparsity • nevertheless, on structured grids, tensor based methods exist for fractional Laplacians limiting the overall effort to O ( n log n ) – also in the optimal control case (Heidel/Khoromskaia/Khoromskij/Schulz 2018) • general nonlocal operators on structured grids provide Toeplitz structures leading to high efficiency (Vollmann/Schulz 2019) → numerical solution of nonlocal shape optimization problems is a new challenge and has to be done on unstructured meshes 1

  4. bounded domain in R d x Ω u ( x , t ) density of particles Ω c Ω 2

  5. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y Ω c Ω 2

  6. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω 2

  7. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . 2

  8. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t 2

  9. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t 2

  10. y y bounded domain in R d x Ω y y u ( x , t ) density of particles γ ( x , y ) probability/tendency that a particle moves y from x to y y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t 2

  11. y y bounded domain in R d x Ω y y u ( x , t ) density of particles γ ( x , y ) probability/tendency that a particle moves y from x to y y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t 2

  12. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t 2

  13. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t � t + h � ⇔ 1 = 1 � � u ( x , t + h ) − u ( x , t ) R d ( u ( y , s ) γ ( y , x ) − u ( x , s ) γ ( x , y )) d y + f ( x , s ) ds h h t � ∂ h → 0 − − − → ∂t u ( x , t ) = R d ( u ( y , t ) γ ( y , x ) − u ( x , t ) γ ( x , y )) d y + f ( x , t ) 2

  14. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t � t + h � ⇔ 1 = 1 � � u ( x , t + h ) − u ( x , t ) R d ( u ( y , s ) γ ( y , x ) − u ( x , s ) γ ( x , y )) d y + f ( x , s ) ds h h t � ∂ h → 0 − − − → ∂t u ( x , t ) = R d ( u ( y , t ) γ ( y , x ) − u ( x , t ) γ ( x , y )) d y + f ( x , t ) 2

  15. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t � t + h � ⇔ 1 = 1 � � u ( x , t + h ) − u ( x , t ) R d ( u ( y , s ) γ ( y , x ) − u ( x , s ) γ ( x , y )) d y + f ( x , s ) ds h h t � ∂ h → 0 − − − → ∂t u ( x , t ) = R d ( u ( y , t ) γ ( y , x ) − u ( x , t ) γ ( x , y )) d y + f ( x , t ) 2

  16. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t � t + h � ⇔ 1 = 1 � � u ( x , t + h ) − u ( x , t ) R d ( u ( y , s ) γ ( y , x ) − u ( x , s ) γ ( x , y )) d y + f ( x , s ) ds h h t � ∂ h → 0 − − − → ∂t u ( x , t ) = R d ( u ( y , t ) γ ( y , x ) − u ( x , t ) γ ( x , y )) d y + f ( x , t ) 2

  17. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t � t + h � ⇔ 1 = 1 � � u ( x , t + h ) − u ( x , t ) R d ( u ( y , s ) γ ( y , x ) − u ( x , s ) γ ( x , y )) d y + f ( x , s ) ds h h t � ∂ h → 0 − − − → ∂t u ( x , t ) = R d ( u ( y , t ) γ ( y , x ) − u ( x , t ) γ ( x , y )) d y + f ( x , t ) � �� � =0 2

  18. φ ( x , y ) bounded domain in R d Ω x u ( x , t ) density of particles S ( x ) y γ ( x , y ) probability/tendency that a particle moves from x to y f ( x , t ) external source density Ω Ω I Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t � t + h � ⇔ 1 = 1 � � u ( x , t + h ) − u ( x , t ) R d ( u ( y , s ) γ ( y , x ) − u ( x , s ) γ ( x , y )) d y + f ( x , s ) ds h h t � ∂ h → 0 − − − → ∂t u ( x , t ) = R d ( u ( y , t ) γ ( y , x ) − u ( x , t ) γ ( x , y ) ) d y + f ( x , t ) � �� � � �� � =: φ ( x , y ) χ S ( x ) ( y ) =0 2

Recommend


More recommend