Search for 3rd generation superpartners with the ATLAS experiment Keisuke Yoshihara (University of Pennsylvania) DPF2017 July 31 (Fermilab)
Introduction The SM of particle physics is incomplete. Supersymmetry can be a new theory solving various problems remained in the SM. 1. Higgs mass divergence λ f h h at Planck scale due to radiative corrections Λ : UV cut-off ~ Planck scale s (scalar partner) (Hierarchy problem) ~ ~ h h λ s -> t and b are a key (large Yukawa coupling) arXiv:1110.6926 2. Naturalness (Natural sparticle mass ˜ g stop mass (1-loop order) SUSY) suggests the − m 2 presence of light 3rd gen. ˜ ˜ t L t R Z = | µ 2 | + m 2 ˜ b L squarks together with the H u 2 ˜ H higgsino LSP(s). 2 DPF2017, July31 2017, Keisuke Yoshihara (University of Pennsylvania)
Large Hadron Collider (LHC) LHC was constructed to perform various searches (Higgs boson and BSM physics) at TeV energy scale. 3 DPF2017, July31 2017, Keisuke Yoshihara (University of Pennsylvania)
Challenging environment at LHC • The cross section for the SUSY proton - (anti)proton cross sections is very small. 9 9 10 10 MSTW 2008 NLO PDFs 8 8 10 σ σ σ σ tot 10 HE 7 7 10 10 Tevatron LHC LHC 20 pile-up 2 pile-up 6 6 10 10 -1 5 5 10 10 -2 s σ σ b σ σ 33 cm 4 4 10 10 3 3 10 10 events / sec for L = 10 jet > √ σ σ σ σ jet (E T √ √ s/20) √ 2 2 10 10 ( nb ) ) ) ) σ σ W σ σ 1 1 10 10 σ ( ( ( σ Z σ σ σ σ σ σ 0 0 10 jet > 100 GeV) 10 σ jet (E T σ σ σ • As the luminosity increases, number -1 -1 10 10 of interactions per crossing (pile-up -2 -2 10 10 σ WW σ σ σ -3 -3 or μ ) and detector occupancy 10 10 σ σ σ σ t σ σ σ ZZ σ -4 -4 10 σ σ ggH σ σ 10 increases. { σ σ σ WH σ M H =125 GeV -5 -5 10 10 σ VBF σ σ σ -6 -6 • Collecting important physics 10 10 WJS2012 -7 -7 10 10 events in this difficult environment 0.1 1 10 √ √ s (TeV) √ √ is a key at the LHC. m t ~1 TeV ~ 4 DPF2017, July31 2017, Keisuke Yoshihara (University of Pennsylvania)
SUSY decay and production at LHC Not reviewed, SUSY production and decay ~ �� �� �� � � , ˜ g/q q � ˜ t b �� �� ~ ~ �� � g/q ~ �� �� �� � � � � g/q q � � � Basic Event topologies of SUSY ! • The stop/sbottom is pair-produced (in RPC scenario) from the gg ~ ~ process if the mass is light (m t,b < 1 TeV). As the SUSY mass goes high, the qq contribution gets larger (PDF is very steep). � ~ ~ • The stop/sbottom decays into intermediate states ( χ 20 , χ 1± ) if exists, �� ~ otherwise the stop/sbottom decays directly into the LSP ( χ 10 ). 5 DPF2017, July31 2017, Keisuke Yoshihara (University of Pennsylvania)
Search strategy t 1 , (˜ t 1 , ˜ ˜ ˜ ˜ ˜ b 1 ) b 1 , t 1 , t 1 , sparticle masses χ ± 0 χ 0 1 , ˜ 1 , ˜ 2 , χ ± 0 χ 0 χ 0 1 , ˜ 1 , ˜ 2 , ˜ 3 χ ± χ 0 χ 0 1 , ˜ 1 , ˜ 1 , ˜ 2 , χ 0 χ 0 1 , ˜ 1 , ˜ 1 , 1 , χ 0 1 , ˜ 1 , a) pure bino LSP P b) wino NLSP P c) higgsino LSP P d) bino / higgsino mix • Various pMSSM (or simplified) models are built to cover the various physics models (GUT, Naturalness, etc…) and the LSP scenarios. • The event selection is optimized for the various final states, ~ ~ ~ ~ e.g. t -> t χ 10 , b χ 1± , b -> b χ 10 , t χ 1± … • Both RPC and RPV stop/sbottom searches are performed in ATLAS. This talk focuses on RPC scenario . 6 DPF2017, July31 2017, Keisuke Yoshihara (University of Pennsylvania)
Bino LSP models Pure bino LSP (simplified) model: New technique: 1 [GeV] ˜ t 1 , BDT and shape-fit > ∆ m = m ˜ t 1 − m ˜ Sparticle masses χ 0 m 1 χ 0 m ˜ t 1 ] m ˜ ∆ m b 0 > m t > + m > ∆ m m ˜ t m W m m ˜ t 1 < m ˜ ∆ χ 0 ∆ 0 100 > 1 > χ 0 m + χ 0 t 1 → bff 0 ˜ 1 m ∆ t 1 → bW ˜ 1 χ 0 ∆ m W 0 Decay is governed t 1 → c ˜ 1 ˜ 1 χ > t m → ˜ ˜ ˜ ˜ 1 ~ ~ t by Δ m(t 1 , χ 10 ) . χ 0 1 , ˜ 1 , ~ 0 0 100 200 0 100 200 300 ] m ˜ t 1 [GeV] t + χ 10 a ) Pure Bino LSP ~ ~ Wino NLSP ( m( χ 1± )~ 2m( χ 10 )) (pMSSM) model: GUT (cMSSM/mSUGRA) b t t 1 , ˜ ˜ b 1 , ~ W h b+ χ 1± signature: p p Sparticle masses ˜ ˜ t 1 t χ 0 χ 0 ˜ ˜ 1 1 χ ± χ 0 ˜ ˜ 2 χ ± 1 high pT b-jets, jets, 0 χ 0 1 , ˜ 1 , ˜ 2 , χ 0 χ ⌥ ˜ ˜ 2 1 χ 0 χ 0 ˜ ˜ ˜ ˜ t 1 t 1 1 p p and large MET Z W χ 0 1 , ˜ t b 1 , ~ ~ b + χ 1± t + χ 20 b) Wino NLSP 7 DPF2017, July31 2017, Keisuke Yoshihara (University of Pennsylvania)
Higgsino LSP models ATLAS-CONF-2017-037 Higgsino LSP (simplified) model: Naturalness Two benchmark models: ˜ t 1 , Events / 1 GeV ATLAS Preliminary Data Total SM 500 -1 s = 13 TeV, 36.1 fb t t 2L t t 1L ~ ~ Preselection (soft lepton) W+jets Single top a) Δ m( χ 10 , χ 1± ) = 5 GeV t t +V Diboson 400 Sparticle masses ~ ~ 300 b) variable Δ m( χ 10 , χ 1± ) = 0-30 GeV 200 100 Signature: χ ± χ 0 χ 0 1 , ˜ 1 , ˜ 1 , ˜ 0 Data / SM 2 , 1.5 1 Soft-objects and large MET 0.5 5 10 15 20 25 30 c ) Higgsino LSP lepton p [GeV] T Well-tempered (pMSSM) model: DM relic density ( Ω h2 ~ 1.12) t 1 , (˜ ˜ b 1 ) • Admixture LSP (bino/higgsino) satisfying M 1 ~ -|µ| Sparticle masses ~ ~ • Typical Δ m( χ 10 , χ 1± ) ~ 20-50 GeV χ ± 0 χ 0 χ 0 1 , ˜ 1 , ˜ 2 , ˜ 3 • Interpretation only (no event selection optimized) χ 0 1 , ˜ 1 , d ) Bino / Higgsino mix 8 DPF2017, July31 2017, Keisuke Yoshihara (University of Pennsylvania)
Top quark reconstruction ATLAS-CONF-2017-037 • In the decay of heavy stop, the top quark is highly boosted. As a consequence jets from the top decay tends to form a large radius jet. Events / 10 GeV Data Total SM ATLAS Preliminary -1 t t 2L t t 1L s = 13 TeV, 36.1 fb Single top W+jets miss Preselection (high E ) 4 10 Others T q R=1.0 3 10 q q t q t 2 10 b b Data / SM 1.5 Resolved top Boosted top 1 0.5 100 150 200 250 300 350 reclustered m [GeV] top Events / 20 GeV • The analysis benefits from reconstructing hadronically decaying top quark (“hadronic top reconstruction”). 9 DPF2017, July31 2017, Keisuke Yoshihara (University of Pennsylvania)
Background estimate ATLAS-CONF-2017-037 30 Events / 40 GeV ATLAS Preliminary Data -1 s = 13 TeV, 36.1 fb Total SM tN_med ttZ CR 25 t t +V CR Diboson Variable B Single top 20 Others SR 15 ttZ(ll) CR 10 5 0 Data / SM 1.5 1 0.5 0 100 200 300 400 500 600 Variable A (ll) p [GeV] p T of Z(ll) [GeV] T • Use control region (invert one or two SR selections) • Simulation uncertainties (PS+hadronization, hard- scattering, PDF, …) need to be assessed and propagated when extrapolating the norm to the SR. • Minor backgrounds are normalized to the SM prediction. 10 DPF2017, July31 2017, Keisuke Yoshihara (University of Pennsylvania)
Results: Validation region ATLAS-CONF-2017-037 Validation Regions Events ATLAS Preliminary Data Total SM -1 s = 13 TeV, 36.1 fb Signal regions t t 2L t t 1L 3 10 W+jets t t +V Single top Diboson 2 10 Blinded 10 SR 1 tot 0 0.077 0.154 0.231 0.308 0.385 0.462 0.538 0.615 0.692 0.769 0.846 0.923 1 2 σ ) / exp 0 - n 2 − obs (n TVR WVR TVR T1LVR T2LVR WVR T1LVR T2LVR WVR bffN bWN tN_med tN_high bffN bffN bWN tN_med tN_med tN_med tN_high tN_high tN_high • VRs are monitored while blinding SRs. 11 DPF2017, July31 2017, Keisuke Yoshihara (University of Pennsylvania)
Results: Signal region ATLAS-CONF-2017-037 Validation Regions Events ATLAS Preliminary Data Total SM Signal -1 s = 13 TeV, 36.1 fb Signal regions t t 2L t t 1L 3 10 W+jets t t +V Region Single top Diboson 2 10 10 1 tot 0 0.077 0.154 0.231 0.308 0.385 0.462 0.538 0.615 0.692 0.769 0.846 0.923 1 2 σ ) / exp 0 - n 2 − obs (n TVR WVR TVR T1LVR T2LVR WVR T1LVR T2LVR WVR bffN bWN tN_med tN_high bffN bffN bWN tN_med tN_med tN_med tN_high tN_high tN_high • No significant excess is observed. 12 DPF2017, July31 2017, Keisuke Yoshihara (University of Pennsylvania)
Recommend
More recommend