scientific visualization
play

Scientific Visualization Dr. Ronald Peikert SciVis 2008 - - PDF document

1-1 Scientific Visualization Dr. Ronald Peikert SciVis 2008 - Introduction Spring 2008 Ronald Peikert Introduction to Scientific Visualization 1-2 Ronald Peikert SciVis 2008 - Introduction What is Scientific Visualization? In 1987,


  1. 1-1 Scientific Visualization Dr. Ronald Peikert SciVis 2008 - Introduction Spring 2008 Ronald Peikert

  2. Introduction to Scientific Visualization 1-2 Ronald Peikert SciVis 2008 - Introduction

  3. What is Scientific Visualization? In 1987, • the National Science Foundation (of the U.S.) started “Visualization in scientific computing” as a new discipline, • and a panel of the ACM coined the term “scientific visualization” Scientific visualization, briefly defined: • The use of computer graphics for the analysis and presentation of computed or measured scientific data. 1-3 Ronald Peikert SciVis 2008 - Introduction

  4. Conferences and Journals Conferences • IEEE Visualization: http://vis.computer.org • EuroVis: http://www.eurovis.org • PacificVis: http://vis.cs.ucdavis.edu/PacificVis08/ Journals: • Transactions on Visualization and Computer Graphics digital library (access from ethz.ch) : http://ieeexplore.ieee.org • Computer Graphics Forum digital library (from ethz.ch): http://www.blackwell-synergy.com/loi/cgf 1-4 Ronald Peikert SciVis 2008 - Introduction

  5. SciVis is interdisciplinary Fields of application include engineering, natural + medical sciences. Video credit: K. Ono, Nissan Research Center Image credit: J. Kniss, University of Utah Video credit: B. Jobard, CSCS Manno 1-5 Ronald Peikert SciVis 2008 - Introduction

  6. Types of data Common to all application fields: numerical datasets, providing an abstraction from the particular application. Characteristics of datasets: • dimension of domain: number of coordinates or parameters • dimension of values: scalar, vector, tensor • discrete vs. discretized data • type of discretization: (un-)structured grid, scattered data, … • static vs. time-dependent 1-6 Ronald Peikert SciVis 2008 - Introduction

  7. SciVis and InfoVis Scientific visualization is mostly concerned with: • 2, 3, 4 dimensional, spatial or spatio-temporal data • discretized data Information visualization focuses on: • high-dimensional, abstract data • discrete data • financial, statistical, etc. • visualization of large trees, networks, graphs g , , g p • data mining: finding patterns, clusters, voids, outliers 1-7 Ronald Peikert SciVis 2008 - Introduction

  8. Preview of topics 2 – Contouring and Isosurfaces • 2D contours • Marching cubes algorithm Marching cubes algorithm • Asymptotic decider algorithm • Faster methods Faster methods 1-8 Ronald Peikert SciVis 2008 - Introduction

  9. Preview of topics 3 – Raycasting • Principle • Transfer functions • Pre-integration • Optimizations Op a o s • Shear-warp factorization Video credit: P. Lacroute, Stanford 1-9 Ronald Peikert SciVis 2008 - Introduction

  10. Preview of topics 4 – Volume Rendering • Object space methods • Texture-based methods • Splatting • Cell projection Ce p ojec o Video credit: O. Staubli, ETH Zurich 1-10 Ronald Peikert SciVis 2008 - Introduction

  11. Preview of topics 5 – Vector Field Visualization • Vector fields and ODEs • Streamlines, streaklines, , , pathlines • Point location methods • Streamsurfaces 1-11 Ronald Peikert SciVis 2008 - Introduction

  12. Preview of topics 6 – Texture Advection • Line integral convolution • Lagrangian-Eulerian g g advection • Image-Based Flow Vis Video credit: R. Laramee, TU Wien 1-12 Ronald Peikert SciVis 2008 - Introduction

  13. Preview of topics 7 – Feature Extraction • Feature classification • Height ridges/valleys • Vortex core lines • Flow separation lines p • Feature tracking 1-13 Ronald Peikert SciVis 2008 - Introduction

  14. Preview of topics 8 – Vector Field Topology • Critical points and periodic orbits • Visualization algorithms g • Topological skeletons in 2D • Topology of 3D vector fields opo ogy o 3 ec o e ds • Chaotic attractors 1-14 Ronald Peikert SciVis 2008 - Introduction

  15. Preview of topics 9 – Tensor Field Visualization • Tensors • Tensor glyphs g yp • Tensor line tracking • Topology of tensor fields opo ogy o e so e ds Video credit: J. Blaas, Delft Univ. of Tech. 1-15 Ronald Peikert SciVis 2008 - Introduction

  16. Preview of topics 10 – Information Visualization • Parallel coordinates • Clustering methods g • Focus+context techniques • Linked views ed e s Video credit: F. van Ham, TU Eindhoven 1-16 Ronald Peikert SciVis 2008 - Introduction

  17. Preview of topics 11 – Visualization Systems • Application Visualization System • VTK/Paraview • Covise Image credit: J. Favre, CSCS Manno. 1-17 Ronald Peikert SciVis 2008 - Introduction

  18. Preview of topics 12 – Hot Topics in Visualization • Illustrative visualization • Multiscale, multiresolution , methods • Uncertainty visualization • Out-of-core algorithms Video credit: S. Bruckner, TU Wien Video credit: S. Bruckner, TU Wien 1-18 Ronald Peikert SciVis 2008 - Introduction

  19. Data discretizations Types of data sources have typical types of discretizations: • Measurement data: – typically scattered (no grid) • Numerical simulation data: – structured, block-structured, unstructured grids structured block structured unstructured grids – adaptively refined meshes – multi-zone grids with relative motion g – etc. • Imaging methods: – uniform grids • Mathematical functions: – uniform/adaptive sampling on demand 1-19 Ronald Peikert SciVis 2008 - Introduction

  20. Unstructured grids 2D unstructured grids: • cells are triangles and/or quadrangles • domain can be a surface embedded in 3-space (distinguish n-dimensional from n-space) 1-20 Ronald Peikert SciVis 2008 - Introduction

  21. Unstructured grids 3D unstructured grids: • cells are tetrahedra or hexahedra • mixed grids (“zoo meshes”) require additional types: wedge (3-sided prism), and pyramid (4-sided) 1-21 Ronald Peikert SciVis 2008 - Introduction

  22. Structured grids General case: curvilinear grid × × N N N • nodes given in array i j j k • cells are implicit Special case: rectilinear grid • simpler coordinate functions: ( ) ( ) = = = x x i , y y j , z z k ( ) More special: uniform grid • coordinates defined by axis-aligned bounding box (2 points) y g g ( p ) 1-22 Ronald Peikert SciVis 2008 - Introduction

  23. Scattered data Scattered data means: only nodes, no cells Typical data sources: measurement data, e.g. meteorological Options for visualization: • point-based methods (relatively few algorithms) • triangulation, e.g. constrained Delaunay, difficult in 3D • resampling on uniform grid p g g 1-23 Ronald Peikert SciVis 2008 - Introduction

  24. Elementary visualization methods Scalar fields can be visualized by plotting its function graphs: ( ) = y f x • 1D field: graph is a curve ( ) = • 2D field: graph is a height field z f x y , Easy for rectilinear grids: Painter’s algorithm (hidden surface removal in software): – Draw cells row by row, from back to front 1-24 Ronald Peikert SciVis 2008 - Introduction

  25. Elementary visualization methods Visualization by color coding: Use: 1D texture mapping! glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glTexParameteri(GL TEXTURE 1D, GL TEXTURE WRAP S, GL CLAMP); g _ _ _ _ _ _ Don't use: vertex colors + Gouraud shading! • Problem of RGB mode: interpolation in wrong space (RGB vs. color bar) p g p ( ) • Problem of color index mode: lighting not possible g g p 1-25 Ronald Peikert SciVis 2008 - Introduction

  26. Elementary visualization methods 1D t 1D textures vertex colors t t l stagnation energy 5 6 7 8 9 10 0.0 0.5 1.0 texture map 1-26 Ronald Peikert SciVis 2008 - Introduction

  27. Elementary visualization methods Transparent border color glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_BORDER_COLOR, transp); Example: vorticity magnitude vorticity magnitude on horizontal slices, high values only 1-27 Ronald Peikert SciVis 2008 - Introduction

  28. Elementary visualization methods Example: von Kármán vortex street, colored by entropy 1-28 Ronald Peikert SciVis 2008 - Introduction

Recommend


More recommend