science one math
play

Science One Math Jan 28 2019 Last time: tan % sec + For any m - PowerPoint PPT Presentation

Science One Math Jan 28 2019 Last time: tan % sec + For any m , and n even tan % sec + = tan % sec +-. sec . convert powers of secant into powers of tangent using tan .


  1. Science One Math Jan 28 2019

  2. Last time: โˆซ tan % ๐‘ฆ sec + ๐‘ฆ ๐‘’๐‘ฆ For any m , and n even โˆซ tan % ๐‘ฆ sec + ๐‘ฆ ๐‘’๐‘ฆ = โˆซ tan % ๐‘ฆ sec +-. ๐‘ฆ sec . ๐‘ฆ ๐‘’๐‘ฆ convert powers of secant into powers of tangent using tan . (๐‘ฆ) + 1 = sec . (๐‘ฆ) then sub ๐‘ฃ = tan (๐‘ฆ) For any n , and m odd โˆซ tan % ๐‘ฆ sec + ๐‘ฆ ๐‘’๐‘ฆ = โˆซ tan %-3 ๐‘ฆ sec +-3 ๐‘ฆ sec ๐‘ฆ tan ๐‘ฆ ๐‘’๐‘ฆ = c onvert powers of tangent into powers of secant by using tan . (๐‘ฆ) = sec . (๐‘ฆ) โˆ’ 1 What if n odd and m even? Use integration by parts!

  3. If m is even, n is odd โˆซ tan % ๐‘ฆ sec + ๐‘ฆ ๐‘’๐‘ฆ use IBP and reduction formula Example : โˆซ tan . ๐‘ฆ sec @ ๐‘ฆ ๐‘’๐‘ฆ = โˆซ(sec . ๐‘ฆ โˆ’ 1)sec @ ๐‘ฆ ๐‘’๐‘ฆ = โˆซ sec B ๐‘ฆ โˆ’sec @ ๐‘ฆ ๐‘’๐‘ฆ โˆซ sec @ ๐‘ฆ ๐‘’๐‘ฆ = โˆซ sec ๐‘ฆ sec . ๐‘ฆ ๐‘’๐‘ฆ u = sec ๐‘ฆ dv = sec . ๐‘ฆ ๐‘’๐‘ฆ du = tan ๐‘ฆ sec ๐‘ฆ ๐‘’๐‘ฆ v = tan ๐‘ฆ = sec ๐‘ฆ tan ๐‘ฆ โˆ’ โˆซ tan ๐‘ฆ tan ๐‘ฆ sec ๐‘ฆ ๐‘’๐‘ฆ = = sec ๐‘ฆ tan ๐‘ฆ โˆ’ โˆซ tan . ๐‘ฆ sec(๐‘ฆ) ๐‘’๐‘ฆ [tan . (๐‘ฆ) = sec . (๐‘ฆ) โˆ’ 1] = sec ๐‘ฆ tan ๐‘ฆ โˆ’ โˆซ sec @ ๐‘ฆ ๐‘’๐‘ฆ + โˆซ sec(๐‘ฆ) ๐‘’๐‘ฆ So โˆซ sec @ ๐‘ฆ ๐‘’๐‘ฆ = D E sec ๐‘ฆ tan ๐‘ฆ + D E โˆซ sec(๐‘ฆ) ๐‘’๐‘ฆ it reduces to computing โˆซ sec ๐‘ฆ ๐‘’๐‘ฆ โ€ฆwe need some trickery hereโ€ฆ ๐‘ฃ = sec ๐‘ฆ + tan ๐‘ฆ , ๐‘’๐‘ฃ = (sec ๐‘ฆ tan ๐‘ฆ + sec . ๐‘ฆ)๐‘’๐‘ฆ OPQ E JK GHI J LMN J โˆซ sec ๐‘ฆ ๐‘’๐‘ฆ = โˆซ sec ๐‘ฆ GHI JKLMNJ RS GHI JKLMNJ ๐‘’๐‘ฆ = โˆซ ๐‘’๐‘ฆ = โˆซ S = ln ๐‘ฃ + ๐ท = โ‹ฏ GHI JKLMNJ

  4. Last time: Trigonometric integrals Integrals of sin + ๐‘ฆ cos % ๐‘ฆ or tan + ๐‘ฆ sec % ๐‘ฆ are computable! Strategies: โ€ข ๐‘ฃ -substitution โ€ข trig identities โ€ข (sometimes) IBP

  5. Last time: Trigonometric integrals Not all integrals with trigonometric functions are computable, e.g. GXN (J) โˆซ sin(๐‘ฆ . ) ๐‘’๐‘ฆ , โˆซ cos(๐‘ฆ . )๐‘’๐‘ฆ , โˆซ ๐‘’๐‘ฆ J We can only approximate these integrals numerically.

  6. When do we see trigonometric integrals? Many computations lead to trigonometric integrals: โ€ข Analysis of oscillating systems (waves, alternating current circuits, etc.) โ€ข Fourier analysis (widely used technique where a periodic function is decomposed in terms of infinite sums of powers of sines and cosines) โ€ข Integrals with roots

  7. Can we compute area of this shape? The shaded area is called a โ€œ luneโ€ The Ducal Palace โ€“ Mantua, Italy It reduces to โˆซ 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ need a new strategy! Trigonometric substitutions Russ Adams in Pike County, IL

  8. Science One Math Jan 30 2019

  9. [ 3 J D/E KJ Z/E ๐‘’๐‘ฆ can be written as โˆซ 3 A) โˆซ ๐‘ฆ -3/. + ๐‘ฆ -@/. ๐‘’๐‘ฆ [ 3 [ 3 3 B) โˆซ J D/E + J Z/E ๐‘’๐‘ฆ 3 C) Either oneโ€”they are equivalent ๐Ÿ D) A and B are equivalent but they are not a correct simplification of ๐’š ๐Ÿ/๐Ÿ‘ K๐’š ๐Ÿ’/๐Ÿ‘

  10. Todayโ€™s goal: Trigonometric substitutions โ€ฆhow to compute integrals with roots.

  11. How to we compute integrals with roots? 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ โˆซ โˆซ ๐‘ฆ 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ start with this one โˆซ ๐‘ฆ . 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ โˆซ ๐‘ฆ @ 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ

  12. @ ๐‘ฃ @/. + C = โˆ’ @ (1 โˆ’ ๐‘ฆ . ) @/. + C โˆซ ๐‘ฆ 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ = โˆซ โˆ’ D 3 3 E ๐‘ฃ ๐‘’๐‘ฃ = โˆ’ ๐‘ฃ = 1 โˆ’ ๐‘ฆ . , ๐‘’๐‘ฃ = โˆ’2๐‘ฆ๐‘’๐‘ฆ Does substitution work for the other integrals? 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ โˆซ โˆซ ๐‘ฆ . 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ โˆซ ๐‘ฆ @ 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ

  13. @ ๐‘ฃ @/. + C = โˆ’ @ (1 โˆ’ ๐‘ฆ . ) @/. + C โˆซ ๐‘ฆ 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ = โˆซ โˆ’ D 3 3 E ๐‘ฃ ๐‘’๐‘ฃ = โˆ’ ๐‘ฃ = 1 โˆ’ ๐‘ฆ . , ๐‘’๐‘ฃ = โˆ’2๐‘ฆ๐‘’๐‘ฆ Does substitution work for the other integrals? 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ no! โˆซ โˆซ ๐‘ฆ . 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ no! โˆซ ๐‘ฆ @ 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ yes! โˆซ ๐‘ฆ . 1 โˆ’ ๐‘ฆ . ๐‘ฆ ๐‘’๐‘ฆ = โˆซ โˆ’ D E (1 โˆ’ ๐‘ฃ) ๐‘ฃ ๐‘’๐‘ฃ =โ€ฆ. When u-sub doesnโ€™t work, we need a different type of substitution โ€ฆ

  14. An observation: โˆซ ๐‘ฆ @ 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ = โˆซ ๐‘ฆ . 1 โˆ’ ๐‘ฆ . ๐‘ฆ ๐‘’๐‘ฆ 1 โˆ’ ๐‘ฆ . = ๐‘ฃ . , ๐‘ฆ . = 1 โˆ’ ๐‘ฃ . โˆ’ 2 ๐‘ฆ ๐‘’๐‘ฆ = 2 ๐‘ฃ ๐‘’๐‘ฃ . (1 โˆ’ ๐‘ฃ . ) ๐‘ฃ . ๐‘’๐‘ฃ = โ€ฆ 3 3 . (1 โˆ’ ๐‘ฃ . ) ๐‘ฃ . ๐‘ฃ ๐‘’๐‘ฃ = โˆซ โˆ’ = โˆซ โˆ’ So maybe to compute the other integrals we could use a substitution of the form 1 โˆ’ ๐‘ฆ . = (โ€ฆ) 2

  15. An observation: โˆซ ๐‘ฆ @ 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ = โˆซ ๐‘ฆ . 1 โˆ’ ๐‘ฆ . ๐‘ฆ ๐‘’๐‘ฆ 1 โˆ’ ๐‘ฆ . = ๐‘ฃ . , ๐‘ฆ . = 1 โˆ’ ๐‘ฃ . โˆ’ 2 ๐‘ฆ ๐‘’๐‘ฆ = 2 ๐‘ฃ ๐‘’๐‘ฃ . (1 โˆ’ ๐‘ฃ . ) ๐‘ฃ . ๐‘’๐‘ฃ = โ€ฆ 3 3 . (1 โˆ’ ๐‘ฃ . ) ๐‘ฃ . ๐‘ฃ ๐‘’๐‘ฃ = โˆซ โˆ’ = โˆซ โˆ’ So maybe to compute the other integrals we need to use a substitution of the form 1 โˆ’ ๐‘ฆ . = (โ€ฆ) 2 1 โˆ’ sin . ๐œ„ = cos . ๐œ„

  16. Trigonometric substitutions ๐‘ฆ = sin ๐œ„ , d๐‘ฆ = cos ๐œ„ ๐‘’๐œ„ then 1 โˆ’ ๐‘ฆ . = 1 โˆ’ sin . ๐‘ฆ = cos . ๐‘ฆ 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ = โˆซ 1 โˆ’ ๐‘ก๐‘—๐‘œ . (๐œ„) cos๐œ„ ๐‘’๐œ„ = โˆซ ๐‘‘๐‘๐‘ก . (๐œ„) cos ๐œ„ ๐‘’๐œ„ = โˆซ ๐‘‘๐‘๐‘ก . ๐œ„ ๐‘’๐œ„ = โˆซ k k Note ๐‘‘๐‘๐‘ก . (๐œ„) = | cos ๐œ„ | . We take | cos ๐œ„ | = cos ๐œ„ , i.e. โˆ’ . โ‰ค ๐œ„ โ‰ค . . โ€ฆand now we compute the trigonometric integral....

  17. โ€œBestโ€ strategy to compute โˆซ ๐‘‘๐‘๐‘ก . ๐œ„ ๐‘’๐œ„ isโ€ฆ a) By parts b) By using trig identity cos . ๐‘ฆ = 1 โˆ’ sin . ๐‘ฆ c) By using double-angle identity and then substitution d) By substitution right away e) By parts and then reduction

  18. โ€œBestโ€ strategy to compute โˆซ cos . ๐œ„ ๐‘’๐œ„ isโ€ฆ a) By parts b) By using trig identity cos . ๐‘ฆ = 1 โˆ’ sin . ๐‘ฆ c) By using double-angle identify and then substitution d) By substitution right away e) By parts, and then reduction

  19. 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ = โˆซ cos . ๐œ„ ๐‘’๐œ„ = โˆซ 3 . [1 + cos 2๐œ„ ] ๐‘’๐œ„ = โˆซ 3 3 = . [ฮธ + . sin 2๐œ„ ] + C โ€ฆconvert back to the original variable ๐‘ฆ ... Note ๐‘ฆ = sin ๐œ„, hence ๐œ„ = arcsin (๐‘ฆ) 1 โˆ’ sin . (๐œ„) = 1 โˆ’ ๐‘ฆ . cos ๐œ„ = Therefore, recalling sin 2๐œ„ = 2sin ๐œ„ cos ๐œ„, 3 3 3 3 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ = . ๐‘ฆ 1 โˆ’ ๐‘ฆ . + C. . ฮธ + [ 2sin ๐œ„ cos ๐œ„ + C = . arcsin (๐‘ฆ) + โˆซ

  20. โˆซ ๐‘ฆ . 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ 9 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ โˆซ

  21. โˆซ ๐‘ฆ . 1 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ ๐‘ฆ = sin ๐œ„ , d๐‘ฆ = cos ๐œ„ ๐‘’๐œ„ = โˆซ sin . (๐œ„) 1 โˆ’ sin . (๐œ„) cos ๐œ„ ๐‘’๐œ„ = โˆซ sin . (๐œ„) cos . (๐œ„) cos๐œ„ ๐‘’๐œ„ = = โˆซ sin . (๐œ„)cos . ๐œ„ ๐‘’๐œ„ = โˆซ(1 โˆ’ cos . ๐œ„ )cos . ๐œ„ ๐‘’๐œ„ = = โˆซ cos ๐Ÿ‘ ๐œ„ ๐‘’๐œ„ โˆ’ โˆซ cos ๐Ÿ“ ๐œ„ ๐‘’๐œ„ = [from last week] 3 3 3 = . ฮธ + [ sin 2๐œ„ โˆ’ @. 12๐œ„ + 8 sin 2๐œ„ + sin 4๐œ„ + ๐ท = 3 3 = w ๐œ„ โˆ’ @. sin 4๐œ„ + ๐ท = 3 3 = w ๐œ„ โˆ’ @. 2sin 2๐œ„ cos(2๐œ„) + ๐ท = 3 3 3x 2sin ๐œ„ cos( ๐œ„) ( 1 โˆ’ 2sin . (๐œ„)) + ๐ท = = w ๐œ„ โˆ’ 3 3 1 โˆ’ ๐‘ฆ . ( 1 โˆ’ 2๐‘ฆ . ) + ๐ท = w arcsin (๐‘ฆ) โˆ’ w ๐‘ฆ

  22. 9 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ ? What substitution would work for โˆซ a) ๐‘ฆ = sin(9๐œ„) b) ๐‘ฆ = 9sin๐œ„ c) 3๐‘ฆ = sin ๐œ„ d) ๐‘ฆ = 3sin๐œ„ e) None of the above

  23. 9 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ ? What substitution would work for โˆซ a) ๐‘ฆ = sin(9๐œ„) b) ๐‘ฆ = 9sin๐œ„ c) 3๐‘ฆ = sin ๐œ„ d) d) ๐’š = ๐Ÿ’๐’•๐’‹๐’ ๐œพ e) None of the above

  24. Using the substitution ๐‘ฆ = 3sin ๐œ„ , the integral 9 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ is equivalent toโ€ฆ โˆซ a) โˆซ 9 โˆ’ 9๐‘ก๐‘—๐‘œ . (๐‘ฆ) ๐‘’๐‘ฆ b) โˆซ 3 1 โˆ’ ๐‘ก๐‘—๐‘œ . (๐œ„) ๐‘’๐œ„ c) โˆซ 3๐‘‘๐‘๐‘ก . (๐œ„) ๐‘’๐œ„ d) โˆซ 9๐‘‘๐‘๐‘ก . (๐œ„) ๐‘’๐œ„ e) โˆซ 9๐‘‘๐‘๐‘ก @ (๐œ„) ๐‘’๐œ„

  25. Using the substitution ๐‘ฆ = 3sin ๐œ„ , the integral 9 โˆ’ ๐‘ฆ . ๐‘’๐‘ฆ is equivalent toโ€ฆ โˆซ a) โˆซ 9 โˆ’ 9๐‘ก๐‘—๐‘œ . (๐‘ฆ) ๐‘’๐‘ฆ b) โˆซ 3 1 โˆ’ ๐‘ก๐‘—๐‘œ . (๐œ„) ๐‘’๐œ„ c) โˆซ 3๐‘‘๐‘๐‘ก . (๐œ„) ๐‘’๐œ„ d) โˆซ ๐Ÿ˜๐’…๐’‘๐’• ๐Ÿ‘ (๐œพ) ๐’†๐œพ d) e) โˆซ 9๐‘‘๐‘๐‘ก @ (๐œ„) ๐‘’๐œ„

  26. 9 + ๐‘ฆ . ๐‘’๐‘ฆ ? What substitution would simplify โˆซ a) ๐‘ฆ = 3sin๐œ„ b) ๐‘ฆ = 3cos๐œ„ c) ๐‘ฆ = 3tan ๐œ„ d) ๐‘ฆ = 3sec๐œ„ e) None of the above

  27. 9 + ๐‘ฆ . ๐‘’๐‘ฆ ? What substitution would simplify โˆซ a) ๐‘ฆ = 3sin๐œ„ b) ๐‘ฆ = 3cos๐œ„ c) c) ๐’š = ๐Ÿ’๐ฎ๐›๐จ ๐œพ d) ๐‘ฆ = 3sec๐œ„ e) None of the above

  28. General case: 3 basic substitutions ๐‘ . โˆ’ ๐‘ฆ . = ๐‘ 1 โˆ’ sin . ๐œ„ with ๐‘ฆ = ๐‘ sin ๐œ„ , where โˆ’ k k . โ‰ค ๐œ„ โ‰ค โ€ข . ๐‘ . + ๐‘ฆ . = ๐‘ 1 + tan . ๐œ„ with ๐‘ฆ = ๐‘ tan ๐œ„ , where โˆ’ k k . < ๐œ„ < โ€ข . ๐‘ฆ . โˆ’ ๐‘ . = ๐‘ s๐‘“๐‘‘ . ๐œ„ โˆ’ 1 with ๐‘ฆ = ๐‘ s๐‘“๐‘‘ ๐œ„ , where k 0 โ‰ค ๐œ„ < โ€ข .

  29. RJ (3x-J E ) Z/E โˆซ Rโ€ฐ โˆซ 3K(ล N โ€ฐ) E โ€ฐ

  30. RJ RJ (3x-J E ) Z/E = โˆซ โˆซ ] Z/E E 3x Z/E [3- โ€น ล’ ๐‘ฆ = 4sin ๐œ„ , ๐‘’๐‘ฆ = 4 cos ๐œ„ ๐‘’๐œ„ 3 [ Iโ€ขG ลฝRลฝ 3 [ Iโ€ขG ลฝRลฝ 3 Rลฝ 3 = = Qโ€ขO Z ลฝ = Qโ€ขO E ลฝ = 3x tan ๐œ„ + C x[ โˆซ x[ โˆซ 3x โˆซ Z [3- GXN ลฝ E ] E

  31. RJ RJ (3x-J E ) Z/E = โˆซ โˆซ 3x Z/E (3-(J/[) E ) Z/E ๐‘ฆ = 4sin ๐œ„ , ๐‘’๐‘ฆ = 4 cos ๐œ„ ๐‘’๐œ„ 3 [ Iโ€ขG ลฝRลฝ 3 [ Iโ€ขG ลฝRลฝ 3 Rลฝ 3 = = Qโ€ขO Z ลฝ = Qโ€ขO E ลฝ = 3x tan ๐œ„ + C x[ โˆซ x[ โˆซ 3x โˆซ Z (3- GXN ลฝ E ) E Trig. Substitutions are a manifestation of Pythagoraโ€™s thrm. x 4 ๐‘ฆ = 4sin ๐œ„ J ฮธ tan ๐œ„ = 3x-J E 16 โˆ’ ๐‘ฆ . Thus RJ 3 J (3x-J E ) Z/E = 3x tan ๐œ„ + C = 3x 3x-J E + C โˆซ

Recommend


More recommend