sanitation are crucial for poverty
play

SANITATION ARE CRUCIAL FOR POVERTY REDUCTION, CRUCIAL FOR - PowerPoint PPT Presentation

SAFE DRINKING WATER AND ADEQUATE SANITATION ARE CRUCIAL FOR POVERTY REDUCTION, CRUCIAL FOR SUSTAINABLE DEVELOPMENT AND CRUCIAL FOR ACHIEVING ANY AND EVERY ONE OF THE MILLENNIUM DEVELOPMENT GOALS. 01 OBJECTIVE TO EVALUATE NEW


  1. SAFE DRINKING WATER AND ADEQUATE SANITATION ARE CRUCIAL FOR POVERTY REDUCTION, CRUCIAL FOR SUSTAINABLE DEVELOPMENT AND CRUCIAL FOR ACHIEVING ANY AND EVERY ONE OF THE MILLENNIUM DEVELOPMENT GOALS.

  2. 01 OBJECTIVE TO EVALUATE NEW SOLUTIONS FOR THE BIOSAND FILTER GEOMETRY AND THE OUTLET INSIDE THE FILTERS, USING THE CFD TO SIMULATE THE FLOW IN THE MODELS: HYDRAID, CAWST AND PEU/UEM. PEU/UEM CAWST HYDRAID

  3. METODOLOGY 02 CHOICE OF OUTLET • 4 DIFFERENT MODELS OF OUTLET FOR PEU/UEM 01 • MODELS SIMULATION. • RESULT ANALYSIS BUILDING AND OPERATING THE EXPERIMENTAL MODEL • SUPPLY CRITERIA 02 • REMOVAL OF TOTAL COLIFORME AND E. COLI • REMOVAL OF TURBIDITY AND PH SIMULATION IN PERM. AND ITERM. REGIME • COMPARATION BETWEEN USUAL FILTER AND 03 ADOPTED OUTLET. DETERMINATION OF RTD CURVE • RTD CURVE EXPERIMENTAL FILTER 04 • RTD CURVE NUMERICAL MODELS

  4. 03 CHOICE OF OUTLET FOR THIS STUDY WE USED THE PEU/UEM DESIGN. SIMULATION OF FILTER CONSIDERING AND NOT CONSIDERING THE POROUS LAYERS FOR THE FOUR OUTLET MODELS PEU/UEM

  5. CHOICE OF OUTLET 03.1 NOT CONSIDERING POROUS LAYERS - FLOWLINE CENTRAL LATERAL BOTTOM WITH RING

  6. CHOICE OF OUTLET 03.2 CONSIDERING POROUS LAYERS - FLOWLINE CENTRAL LATERAL BOTTOM WITH RING

  7. CHOICE OF OUTLET 03.2 CONSIDERING POROUS LAYERS – VELOCITY PROFILE AXIS XZ [Y=0] CENTRAL WITH RING LATERAL BOTTOM AXIS YZ [X=0] LATERAL BOTTOM WITH RING CENTRAL

  8. CHOICE OF OUTLET 03 CONSIDERING POROUS LAYERS – VELOCITY PROFILE .2 AXIS XZ CENTRAL WITH LATERAL BOTTOM RING AXIS YZ LATERAL BOTTOM WITH CENTRAL RING

  9. 04

  10. 04.1 100 90 80 PASSING PERCENTAGE 70 D60%=0.40 60 (%) 50 40 30 20 D10%=0.23 10 0 0,0100 0,1000 1,0000 10,0000 GRAIN DIMMENSIONS (mm)

  11. 04.1 GRAIN SPECIFIC MASS (NBR 6508/84) ρ=2,75 (g/cm³) MAXIMUM VOID RATIO (NBR 12004/90) e máx =44,22% D 10% D 10% =0,23 (mm) D 60% D 60% =0,40 (mm)

  12. 04.2 SUPPLY CRITERIA CONTINOUS INTERMITTENT OPERATION OPERATION SUPPLY 10L/DAY SUPPLY 10L/DAY

  13. 04.3 BACTERIOLOGICAL REMOVAL REMOVAL IN CONTINUOUS REMOVAL IN INTERMMITENT OPERATION OPERATION [log 10 ] INDEX [log 10 ] Filter A Filter B Filter C Filter D Filter E avg max avg max avg max avg max avg max Total 1,12 2,58 0,88 2,00 0,83 1,67 0,79 1,84 1,01 2,26 Coliformes E. coli 0,79 1,66 0,83 1,67 0,58 1,14 0,89 1,42 0,77 1,44

  14. 04.4 TURBIDITY REMOVAL 50,00 45,00 40,00 35,00 Turbidity (UT) 30,00 25,00 20,00 15,00 10,00 5,00 0,00 0 10 20 30 40 50 Days Filtro A Filtro B Filtro C Filtro D Filtro E Antes

  15. 04.5 HEAD LOSS IN THE POROUS LAYERS 7,00 6,00 5,00 i [m/m] 4,00 i1 i2 3,00 i3 2,00 i4 1,00 - 0 10 20 30 40 50 Days

  16. 05 SIMULATION IN PERMANENT REGIME WE SIMULATED THE CAWST AND HYDRAID FILTERS IN PERMANENT REGIME. FOR EACH ONE WE USED: • CONVENCIONAL MODEL • MODEL WITH RING CAWST HYDRAID

  17. SIMULATION IN PERMANENT REGIME 05.1 CAWST FILTER – FLOW LINES WITH RING CONVENTIONAL

  18. SIMULATION IN PERMANENT REGIME 05.1 CAWST FILTER – CUT YZ CONVENTIONAL WITH RING [Y=0cm] [Y=6cm]

  19. SIMULATION IN PERMANENT REGIME 05.1 CAWST FILTER – CUT XY [Z=1cm] WITH RING CONVENTIONAL

  20. SIMULATION IN PERMANENT REGIME 05.2 HYDRAID FILTER – FLOW LINES CONVENTIONAL WITH RING

  21. SIMULATION IN PERMANENT REGIME 05.2 HYDRAID FILTER – CUT YZ WITH RING CONVENTIONAL [Y=6cm] [Y=0cm]

  22. SIMULATION IN PERMANENT REGIME 05.2 HYDRAID FILTER – CUT XY [Z=1cm] CONVENTIONAL WITH RING

  23. 06

  24. 06.1 THREE SUPPLIES IN THE 1 st ADDITIONAL CONCENTRATION OF 2g/L OF NaCl.

  25. 06.1 FILLED FILTERS 5,00 2 ND SUPPLY 1 ST SUPPLY. 3 RD SUPPLY 4,50 NaCl CONCENTRATION (g/L) 4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,50 - (0,50) 0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00 FILTERED VOLUME (L) A (Preenchido e Contínuo) B (Preenchido e Interm.)

  26. 06.2 7,000 6,000 5,000 4,000 E( θ ) 3,000 2,000 1,000 0,000 0,000 0,500 1,000 1,500 2,000 2,500 3,000 θ CHARACTERISTIC VOLUME Dead Volume 1,52% Slug Volume 61,53% Mixture Volume 36,95%

  27. 06.3 0,140 0,120 0,100 0,080 0,060 0,040 0,020 0,000 0,00 20,00 40,00 60,00 80,00 100,00 120,00 140,00 160,00 PEU/UEM com anel - Empírico PEU/UEM com anel - COmputacional

  28. 06.4 6,000 5,000 4,000 E( θ ) 3,000 2,000 1,000 0,000 0,000 0,500 1,000 1,500 2,000 2,500 3,000 Dimensionless time θ PEU UEM convencional HydrAid Conv PEU UEM anel CAWST conv CAWST conv HydrAid anel

  29. 06.4 PEU/UEM PEU/UEM CAWST CAWST HydrAid HydrAid convenc. ring convenc. ring convenc. ring τ [min] 64,32 64,23 61,7 64,23 54,95 55,14 θmin 0,72 0,73 0,74 0,72 0,52 0,59 θmax 0,84 0,8 0,85 0,82 0,89 0,86 Dead volume 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% Slug volume 78,13% 76,42% 79,42% 77,22% 70,37% 72,69% Mixture volume 21,87% 23,58% 20,58% 22,78% 29,63% 27,31%

  30. 07 CONCLUSIONS • IN THE EVALUATION OF THE FOUR MODELS OF PEU/UEM FILTER THE CENTRAL AND RING OUTLETS PRESENTED BETTER RESULTS • FOR THE CAWST AND HYDRAID FILTERS THE RING OUTLET PRESENTED BETTER RESULTS REGARDING THE FLOW LINES AND VELOCITY PROFILES. • THE EXPERIMENTAL FILTER ASSISTED IN THE COMPREHENSION AND DETERMINATION OF MATHEMATIC PARAMETERS. THE TURBIDITY AND PH PARAMETERS WERE IN ACCORDANCE WITH THE BRAZILIAN POTABILIZATION NORMS. • IN THIS STUDY ALL THE MATHEMATICAL SOLUTIONS PRESENTED EQUIVALENCE FOR THE RTD CURVES.

  31. 08 FUTURE RECOMMENDATIONS • EMPIRICALLY EVALUATE THE POTABILIZATION PARAMETERS IN THE VARIATIONS OF BIOSAND FILTERS DESIGNS . • ADD POTABILIZATION PARAMETERS IN THE VARIATIONS OF MATHEMATIC MODELS.

Recommend


More recommend