run 2 data taking run 2 data taking
play

Run 2 Data Taking Run 2 Data Taking 50ns ramp (early measurement) - PowerPoint PPT Presentation

Run 2 Data Taking Run 2 Data Taking 50ns ramp (early measurement) 25ns data taking wasnt Run 2 Data Taking 50ns ramp (early measurement) 25ns data taking wasnt Run


  1. Run 2 Data Taking

  2. Run 2 Data Taking … 50ns ramp (early measurement) 25ns data taking

  3. • – wasn’t • – • – Run 2 Data Taking … 50ns ramp (early measurement) 25ns data taking

  4. • – wasn’t • – • – Run 2 Data Taking • •

  5. • – wasn’t • – • – • Run 2 Data Taking • 17

  6. Run 2 Data Taking b • – p (6.5 TeV) – Neon : 20h b • – p (6.5 TeV) – Helium : 20h – p (6.5 TeV) – Argon : 3 days – p (2.51 TeV) – Argon : 9 h – – – Pb (6.37Z TeV) – Argon : ongoing – – – • – – – – – … – – ng – • “SMOG piquet“ every start and end of physics. • – our probes, – … – • “SMOG piquet“ every start and end of physics.

  7. “Success is a journey, not a destination.” Arthur Ashe

  8. The evolution of LHCb in 2015

  9. The evolution of the LHCb trigger in 2015

  10. ���� �������� ���� ����� � ������ � ��������� ��� ���� ���� ���� ���� ���� ������ � �� ��� �� ����� ��� � � ��� �� ����� The Challenge At 13 TeV & L = 4 × 10 32 cm -2 s -1 : VELO RICHES MUONS E/HCAL Primary vertices Trigger, p, e, K, pi particle ID Trigger and PID Impact parameter y gamma PID ~45 kHz bb pairs produced ~ 1 MHz cc pairs produced HCAL M5 ECAL M4 SPD/PS 5m M3 M2 Magnet RICH2 M1 T3 T2 T1 TT Can only readout @ 1 MHz Vertex Locator (must decide within 4 μ s) Can only store O(10kHz) (decide using ~50K cores) TRACKER P of charged particles Magnet z 5m 10m 15m 20m �� �� ��� ��� � � � � �� �� �� � � � � � �

  11. ���� �������� ���� ����� � ������ � ��������� ��� ���� ���� ���� ���� ���� ������ � �� ��� �� ����� ��� � � ��� �� ����� 40 MHz bunch crossing rate Run 1 Trigger L0 Hardware Trigger : 1 MHz readout, high E T /P T signatures At 13 TeV & L = 4 × 10 32 cm -2 s -1 : VELO RICHES MUONS 450 kHz 400 kHz 150 kHz E/HCAL h ± µ/µµ e/ γ Primary vertices Trigger, p, e, K, pi particle ID Trigger and PID Impact parameter y gamma PID ~45 kHz bb pairs produced ~ 1 MHz cc pairs produced Software High Level Trigger HCAL M5 ECAL M4 SPD/PS 5m M3 29000 Logical CPU cores M2 Magnet RICH2 M1 T3 T2 Offline reconstruction tuned to trigger T1 time constraints TT Can only readout @ 1 MHz Vertex Mixture of exclusive and inclusive Locator (must decide within 4 μ s) selection algorithms Can only store O(10kHz) 5 kHz Rate to storage (decide using ~50K cores) 2 kHz TRACKER 2 kHz 1 kHz Inclusive/ Inclusive Muon and P of charged Exclusive particles Magnet Topological DiMuon z 5m 10m 15m 20m Charm �� �� ��� ��� � � � � �� �� �� � � � � � �

  12. 2.02 B 0 D ∗ → D 0 π [1211.1230] s → µµ [1211.2674] ) [GeV/ c ] 2 Run 1 Performance 6 10 × 16 ) ) 2 2 1.2 c c Candidates / (44 MeV/ Candidates/(0.1 MeV/ 14 LHCb LHCb RS data 1 BDT>0.7 12 Fit -1 3 fb Background 10 0.8 8 0.6 6 0.4 4 2 0.2 0 5000 5500 0 2 [MeV/ ] Very clean signals 2.005 2.01 2.015 2.02 m c + − µ µ 0 M ( D + ) [GeV/ c ] 2 π s B 0 s → J / ψφ [1304.2600v3] B 0 s → D s π [1304.4741] 6 10 Large “dynamic range” ) 4500 ) 2 c Candidates / (2.5 MeV/c 4000 LHCb Candidates/(0.1 MeV/ LHCb ) 2 RS data data ) a) c − − 2 Candidates/(10 MeV/c D → φ π 3500 candidates / (15 MeV/ 4000 s fit 4000 Fit -1 LHCb Preliminary L =1.0 fb 3000 − 0 + int B → D π Data s s Background Signal B → D π − 3000 0 + 2500 s B → D K s (*) s s B → D ( π , ρ ) s s LHCb B → D π misid bkg. Good trigger efficiencies 2000 d 2000 2000 Λ → Λ π b c (*) comb bkg. B → D ( π , ρ ) 1500 d (s) Combinatorial 1000 1000 0 500 5100 5200 5300 5400 5500 5600 5700 5800 0 2 m(D π ) [MeV/c ] 5350 5400 5450 5500 5550 …. except for charm s − 0 + 2 (D π ) invariant mass [MeV/ ] c D s π 5320 5340 5360 5380 5400 5420 s - + 2 m(J/ K K ) [MeV/c ] …. but there is a lot of charm ψ 2.02 Hadronic Dimuon ) [GeV/ c ] 2 B + → J / K + Mode D → hhh B → hh ✏ (L0) [%] 27 62 93 ✏ (HLT | L0) [%] 42 85 92 ✏ (HLT × L0) [%] 11 52 84

  13. Run 2 Challenge • Energy: 8 TeV → 13 TeV + σ bb x 1.6 - σ inelastic x 1.2 - multiplicity x 1.2 • Bunch spacing: 50 ns → 25 ns + constant lumi → pileup / 2 - 1 MHz L0/readout limit: 1/20 → 1/40 - spillover

  14. Run 2 Challenge • Energy: 8 TeV → 13 TeV + σ bb x 1.6 - σ inelastic x 1.2 - multiplicity x 1.2 • Bunch spacing: 50 ns → 25 ns + constant lumi → pileup / 2 - 1 MHz L0/readout limit: 1/20 → 1/40 - spillover

  15. Run 2 Challenge • Energy: 8 TeV → 13 TeV + σ bb x 1.6 - σ inelastic x 1.2 Can we maintain - multiplicity x 1.2 improve performance • Bunch spacing: 50 ns → 25 ns under more + constant lumi → pileup / 2 challenging conditions? - 1 MHz L0/readout limit: 1/20 → 1/40 - spillover

  16. “The formulation of the problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skill.” “To raise new questions, new possibilities, to regard old questions from a new angle requires creative imagination and marks real advances…” — Albert Einstein

  17. “The formulation of the problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skill.” “To raise new questions, new possibilities, to regard old questions from a new angle requires creative imagination and marks real advances…” — Albert Einstein What is the problem?

  18. proton - (anti)proton cross sections Some things are not rare… 9 9 10 10 8 8 10 σ σ tot σ σ 10 7 7 10 10 Tevatron LHC 6 6 10 10 -1 5 5 10 10 -2 s σ b σ σ σ 33 cm 4 4 10 10 3 3 10 10 events / sec for L = 10 jet > √ σ σ jet (E T √ s/20) σ σ √ √ 2 2 10 10 ( nb ) ) ) ) σ W σ σ σ 1 1 10 10 σ ( ( ( σ Z σ σ σ σ σ σ 0 0 10 10 jet > 100 GeV) σ jet (E T σ σ σ -1 -1 10 10 -2 -2 10 10 σ WW σ σ σ -3 -3 10 10 σ t σ σ σ σ ZZ σ σ σ -4 -4 10 σ ggH σ σ σ 10 { σ σ σ σ WH M H =125 GeV -5 -5 10 10 σ σ σ σ VBF -6 -6 10 10 WJS2012 -7 -7 10 10 0.1 1 10 √ √ √ √ s (TeV) 8

  19. proton - (anti)proton cross sections Some things are not rare… 9 9 10 10 8 8 10 σ tot σ σ σ 10 Selected for a Viewpoint in Physics 7 7 week ending 10 10 Tevatron LHC P H Y S I C A L R E V I E W L E T T E R S PRL 110, 101802 (2013) 8 MARCH 2013 D 0 Oscillations Observation of D 0 � � 6 6 10 10 R. Aaij et al. * -1 5 5 10 10 -2 s (LHCb Collaboration) σ b σ σ σ 33 cm 4 4 (Received 6 November 2012; published 5 March 2013) 10 10 We report a measurement of the time-dependent ratio of D 0 ! K þ � � to D 0 ! K � � þ decay rates in D �þ -tagged events using 1 : 0 fb � 1 of integrated luminosity recorded by the LHCb experiment. We 3 3 10 10 events / sec for L = 10 measure the mixing parameters x 0 2 ¼ ð� 0 : 9 � 1 : 3 Þ � 10 � 4 , y 0 ¼ ð 7 : 2 � 2 : 4 Þ � 10 � 3 , and the ratio of jet > √ σ σ jet (E T √ s/20) σ σ √ √ doubly-Cabibbo-suppressed to Cabibbo-favored decay rates R D ¼ ð 3 : 52 � 0 : 15 Þ � 10 � 3 , where the 2 2 10 10 ( nb ) ) ) ) uncertainties include statistical and systematic sources. The result excludes the no-mixing hypothesis with a probability corresponding to 9.1 standard deviations and represents the first observation of D 0 � � D 0 σ σ W σ σ 1 1 10 10 σ ( ( ( oscillations from a single measurement. σ σ Z σ σ σ σ σ 0 0 10 10 jet > 100 GeV) σ σ jet (E T σ σ 3.6K events 8.4M events 6 3 10 10 × × -1 -1 10 10 10 1.2 ) ) -2 -2 LHCb 2 2 LHCb 10 10 RS data WS data c c Candidates/(0.1 MeV/ Candidates/(0.1 MeV/ σ σ σ WW σ 1 8 Fit Fit -3 -3 10 10 σ σ σ σ t Background Background 0.8 σ ZZ σ σ σ 6 -4 -4 10 σ σ σ ggH σ 10 { 0.6 σ WH σ σ σ M H =125 GeV -5 -5 4 10 10 0.4 σ VBF σ σ σ D 0 → K - π + D 0 → π - K + -6 -6 10 10 2 0.2 WJS2012 -7 -7 10 10 0.1 1 10 0 0 2.005 2.01 2.015 2.02 2.005 2.01 2.015 2.02 √ s (TeV) √ √ √ 0 0 + + 8 2 2 ( ) [GeV/ ] ( ) [GeV/ ] M D c M D c π π s s

  20. “The problem is not the problem. The problem is your attitude about the problem”

  21. Offline → Online! • Do “Online” what used to be done “Offline” • Calibrate in “Real Time” • Run offline reconstruction online • Skip offline reconstruction / skimming • Don’t store events / information that you won’t really use…

Recommend


More recommend