characterization of miller run and conceptual plan for
play

+ Characterization of Miller Run and Conceptual Plan for - PowerPoint PPT Presentation

+ Characterization of Miller Run and Conceptual Plan for Characterization of Miller Run and Conceptual Plan for Watershed Restoration UNIV 298 Spring 2009 + Miller Run: An Overview + Miller Run Statistics 80% of Miller Run is owned by


  1. + Characterization of Miller Run and Conceptual Plan for Characterization of Miller Run and Conceptual Plan for Watershed Restoration UNIV 298 Spring 2009

  2. + Miller Run: An Overview

  3. + Miller Run Statistics  80% of Miller Run is owned by Bucknell.  The runoff from the new housing developments also contribute to the stream.  Length of Stream: 2,000m  Percent Forest: 13.1% (The Grove and the Golf Course)  Percent Urban: 37.5% (Buildings and Roads)  Channelized: 75-100%  50% Rip-rap Source: streamstats.usgs.gov (2009)

  4. + Introduction to the Presentation  Characterization of Miller Run  The impairment of the stream:  The Channel  The Water  Conceptual Plan  Our Proposed Solutions  The Costs of Our Proposed Solutions  Conclusions  What Miller Run Could Be Photo Courtesy of: http://www.facstaff.bucknell.edu

  5. + Project Goals Flood Control  Storm Water Management  Retention  Infiltration  Aesthetic Appeal  Native Species  Riparian Health  Recreation  Improve Ecological Health  Year-Round Flow  Miller Run Today Sewage Recycling  Habitat- Diversity  Water Quality  Target Species  Channel Sustainability  Space for Migration  Structure Renewal  Environmental Education  Watershed Management  What Miller Run Could Be Learning and Teaching  Photo Taken by Dina El-Mogazi at Wellesley College

  6. + The Characterization of Miller Run Miller Run Put Into Perspective

  7. +

  8. + EEE ZZ QQ VV NN LL GG MR 1 Z S A A O M MR 2 I B

  9. Reach 1 + Cross Section B 0 0 5 10 15 20 Vertical (m) -1 -2 -3 -4 Horizontal from left bank (m) Cross Section I 0 0 5 10 15 20 -1 Vertical (m) -2 -3 -4 Horizontal from left bank (m) Cross Section M 0 -0.5 0 5 10 15 20 -1 Vertical (m) -1.5 -2 -2.5 -3 -3.5 -4 Horizontal from left bank (m)

  10. Reach 2 + Cross Section O 0 0 5 10 15 20 -1 Vertical (m) -2 -3 -4 Horizontal from left bank (m) Cross Section S 0 0 5 10 15 20 -1 Vertical ( m ) -2 -3 -4 Horizontal from left bank (m) Cross Section Z 0 0 5 10 15 20 -1 Vertical (m) -2 -3 -4 Horizontal from left bank (m)

  11. Reach 3 + Cross Section AA 0 0 5 10 15 20 -1 Vertical (m) -2 -3 -4 Horizontal from left bank (m) Cross Section GG 0 0 5 10 15 20 -1 Vertical (m) -2 -3 -4 Horizontal from left bank (m) Cross Section LL 0 0 5 10 15 20 -1 Vertical (m) -2 -3 -4 Horizontal from left bank (m)

  12. Reach 4 + Cross Section NN 0 0 5 10 15 20 -1 Vertical (m) -2 -3 -4 Horizontal from left bank (m) Cross Section QQ 0 0 5 10 15 20 -1 Vertical (m) -2 -3 -4 Horizontal from left bank (m) Cross Section VV 0 -0.5 0 5 10 15 20 -1 Vertical (m) -1.5 -2 -2.5 -3 -3.5 -4 Horizontal from left bank (m)

  13. Reach 5 + Cross Section XX 0 0 5 10 15 20 -1 Vertical (m) -2 -3 -4 Horizontal from left bank (m) Cross Section ZZ 0 0 5 10 15 20 Vertical (m) -1 -2 -3 -4 Horizontal from left bank (m) Cross Section EEE 0 0 5 10 15 20 -1 Vertical (m) -2 -3 -4 Horizontal from left bank (m)

  14. +

  15. +

  16. + Hydrologic Issues  Portions of Miller Run frequently go dry  Water quickly enters and exits the system  High sediment content: hinders life, destroys restoration structures Frequent Periods of Zero Flow 0.140 0.120 Discharge (m 3 /s) 0.100 0.080 0.060 0.040 0.020 0.000 6/4/2008 0:03 6/14/2008 0:03 6/24/2008 0:03 7/4/2008 0:03 7/14/2008 0:03 7/24/2008 0:03 Time

  17. + Methodology  Established gauges upstream and downstream to measure the height of the water  Used rating curve and Manning Equation to calculate discharge (flow of water over time) 1.8 1.6 1.4 Dow nstrream 1.2 Upstream Stage (ft) 1 Upstream: y = 1.3806x 0.2115 0.8 R 2 = 0.9822 0.6 Dow nstream: y = 1.5511x 0.211 R 2 = 0.933 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Discharge (m 3 /s)

  18. DOWNSTRE AM MR2 GAUGE CAMPUS UPSTREA M MR1 GAUGE

  19. + Flow

  20. Discharge (m 3 /s) 0.2 0.4 0.6 0.8 1.2 0 1 2/7/09 17:00 2/7/09 23:00 2/8/09 5:00 February Snow Melt Hydrograph 2/8/09 11:00 2/8/09 17:00 2/8/09 23:00 Time 2/9/09 5:00 2/9/09 11:00 2/9/09 17:00 2/9/09 23:00 2/10/09 5:00 Downstream Upstream 2/10/09 11:00 2/10/09 17:00 2/10/09 23:00

  21. Discharge (m 3 /s) 0.005 0.015 0.025 0.01 0.02 0.03 0 2/18/09 0:00 Feb 18 Snowmelt and Rain Event Hydrograph 2/18/09 6:00 2/18/09 12:00 2/18/09 18:00 2/19/09 0:00 2/19/09 6:00 Time 2/19/09 12:00 2/19/09 18:00 2/20/09 0:00 2/20/09 6:00 2/20/09 12:00 Upstream 2/20/09 18:00 2/21/09 0:00

  22. +

  23. Storm Pipes throughout campus responsible for the double peak

  24. Upstream Discharge Lag Time For Small Rainfall Event 0.07 0.045 0.04 0.06 0.035 0.05 Discharge (m 3 /s) 0.03 Rainfall (in.) 0.04 0.025 0.02 0.03 0.015 0.02 0.01 0.01 0.005 0 0 3/26/2009 14:00 3/26/2009 16:00 3/26/2009 18:00 3/26/2009 20:00 3/26/2009 22:00 3/27/2009 0:00 3/27/2009 2:00 Discharge Rain Time

  25. Downstream Discharge Lag Time For Small Rainfall Event 0.07 0.045 0.04 0.06 0.035 Discharge (m 3 /s) 0.05 0.03 Rainfall (in.) 0.04 0.025 0.02 0.03 0.015 0.02 0.01 0.01 0.005 0 0 3/26/09 14:00 3/26/09 16:00 3/26/09 18:00 3/26/09 20:00 3/26/09 22:00 3/27/09 0:00 3/27/09 2:00 Discharge Rain Time

  26. Discharge (m 3 /s) 0.05 0.15 0.25 0.1 0.2 0 1/7/2009 9:00 1/7/2009 11:00 1/7/2009 13:00 Upstream Discharge Lag Time For Large Rainfall Event 1/7/2009 15:00 1/7/2009 17:00 Time 1/7/2009 19:00 1/7/2009 21:00 1/7/2009 23:00 1/8/2009 1:00 1/8/2009 3:00 Rain Discharge 0 0.05 0.1 0.15 0.2 0.25 Rainfall (in.)

  27. Discharge (m 3 /s) 0.05 0.15 0.25 0.1 0.2 0 1/7/09 9:00 1/7/09 11:00 1/7/09 13:00 Downstream Discharge Lag Time 1/7/09 15:00 For Large Rainfall Event 1/7/09 17:00 Time 1/7/09 19:00 1/7/09 21:00 1/7/09 23:00 1/8/09 1:00 1/8/09 3:00 Rain Discharge 0 0.05 0.1 0.15 0.2 0.25 Rainfall (in.)

  28. Sediment

  29. Discharge (m 3 /s) 0.2 0.4 0.6 0.8 1.2 0 1 2/6/2009 16:34 Upstream Discharge and Sediment 2/7/2009 4:34 2/7/2009 16:34 Concentration 2/8/2009 4:34 Time 2/8/2009 16:34 2/9/2009 4:34 2/9/2009 16:34 Sediment Discharge 2/10/2009 4:34 0 50 100 150 200 250 300 350 400 450 Sediment Concetration (PPM)

  30. Discharge (m 3 /s) 0.2 0.4 0.6 0.8 1.2 0 1 2/6/09 16:00 Downstream Discharge and Sediment 2/7/09 4:00 2/7/09 16:00 Concentration 2/8/09 4:00 Time 2/8/09 16:00 2/9/09 4:00 2/9/09 16:00 Sediment Discharge 2/10/09 4:00 0 100 150 200 250 300 350 400 450 50 Sediment Concentration (PPM)

  31. 224 + Concentrations In Parts Per 18 Million 1798 117 625 521 371 270 253 606 205 2287

  32. + Water Quality  Final Report

  33. + Water Chemistry  Tests Used:  Sondes were used to automatically record stream conditions such as temperature, pH, specific conductivity, and dissolved oxygen.  Water samples were also taken manually during normal flow and high flow events, and analyzed for chemical composition.  Two sites were sampled for each reading; MR-1 was upstream at the Art Barn crossing and MR-2 was downstream at Bucknell Hall.

  34. Baseline Ion Concentrations + Upstream Site February 17, 2009 Downstream Site- February 17, 2009 Concentration Concentration Dissolved Solid (mg/L) Dissolved Solid (mg/L) Ammonium <10 Ammonium <10 Sulfate 34 Sulfate 48 Chloride 81.7 Chloride 47.9 Nitrate 1.9 Nitrate 1.98 Phosphorous <0.1 Phosphorous <0.1 Sodium 32.2 Sodium 21.9 Potassium 3.2 Potassium 2.8 Magnesium 9.7 Magnesium 9.9 Calcium 57.9 Calcium 53.5 Manganese 0.05 Manganese <0.03 Iron 0.2 Iron 0.23 Lead <0.01 Lead <0.01 Zinc <0.02 Zinc <0.02 Chromium <0.004 Chromium <0.004 Copper <0.04 Copper <0.04 Nickel <0.005 Nickel <0.005 Cadmium <0.001 Cadmium <0.001 Arsenic <0.005 Arsenic <0.005

  35. + Sodium, Chloride, and Potassium Fluctuations (February 7-9, 2009 Snowmelt) [Na + ] [Cl - ] Upstream (Art Barn) 100 Upstream (Art Barn) 300 Downstream (Hunt Hall) 90 Downstream (Hunt Hall) 250 80 70 [Na + ] (mg/L) [Cl - ] (mg/L) 200 60 50 150 40 100 30 20 50 10 0 0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 Time (hr) Time (hr) [K + ] Negative Impacts: Surface runoff 12 and interflow carry high ion 10 Upstream (Art Barn) loads into the waterway from [K + ] (mg/L) 8 Downstream (Hunt Hall) road salts and fertilizers. 6 4 2 0 0 5 10 15 20 25 30 35 40 45 50 Time (hr)

  36. Sulfate and Nitrate Fluctuations (February + 7-9, 2009 Snowmelt) Negative Impacts: [SO 4 2- ] 70 • Initial decrease is due 60 2- ] (mg/L) 50 to simple dilution. 40 30 Upstream (Art Barn) [SO 4 20 • Increase is due to an Downstream (Hunt Hall) 10 0 underground 0 5 10 15 20 25 30 35 40 45 50 contaminant located Time (hr) near the upstream site- probably fertilizer [NO 3 - ] accumulation or a 2.5 broken sewage line. 2.0 - ] (mg/L) 1.5 1.0 Upstream (Art Barn) [NO 3 Downstream (Hunt Hall) 0.5 0.0 0 5 10 15 20 25 30 35 40 45 50 Time (hr)

Recommend


More recommend