role of length and time scales of dynamic heterogeneities
play

Role of length and time scales of dynamic heterogeneities on - PowerPoint PPT Presentation

Niigata 311epicenter Tokyo Kyoto IMS Role of length and time scales of dynamic heterogeneities on fragility in various model glasses Kang Kim (IMS Niigata Univ.) Shinji Saito (IMS) K. Kim and S. Saito, J. Chem. Phys. 138, 12A506 (2013)


  1. Niigata 311epicenter Tokyo Kyoto IMS Role of length and time scales of dynamic heterogeneities on fragility in various model glasses Kang Kim (IMS → Niigata Univ.) Shinji Saito (IMS) K. Kim and S. Saito, J. Chem. Phys. 138, 12A506 (2013)

  2. Outline ✓ Purpose ‣ fragility in glass transition ‣ dynamic heterogeneities ‣ MD for various model glasses ✓ Spatiotemporal structures of DH ‣ multi-point and multi-time correlations ‣ fragility vs. length scale ξ and lifetime τ hetero ‣ model detail dependence ✓ Summary

  3. Vogel-Fulcher-Tammann Fragility P. G. Debenedetti and F. H. Stillinger, Nature 410, 259-267 (2001) � � 1 η ∼ exp K ( T/T g − 1) Log(Viscosity in poise) K : Fragility index Fragile: o-Terphenyl K : large van der Waals super-Arrhenius Strong: SiO 2 T g / T K : small Physical implication of network-formation Arrhenius fragility K ?

  4. It looks like a universal hallmark, doesn’t it? Simulations visualize Dynamic Heterogeneity (1995 ~ ) Binary hard spheres Schematic illustration of DH Binary LJ disks (Flenner-Zhang-Szamel) (Ediger) (Berthier) ξ Polydisperse WCA spheres Binary soft disks Binary LJ spheres (Kawasaki-Tanaka) (Hurley-Harrowell) (Donati-Douglas-Poole-Kob-Glotzer)

  5. How do collective motions lead to super-Arrhenius? Purpose of this study: Fragility vs. Dynamic Heterogeneities P. G. Debenedetti and F. H. Stillinger, Nature 410, 259-267 (2001) Binary soft spheres (Yamamoto-Onuki) Log(Viscosity in poise) T g / T indivisual? collective? homogeneous? heterogeneous?

  6. Is the model detail really trivial? (a) Kob-Andersen LJ model (KALJ) (d) Coslovich-Pastore network model (NTW) Ni 80 P 20 SiO 2 (b) Wahnström LJ model (WAHN) ☐ ! WAHN (K=0.64) (c) Hiwatari-Hansen softsphere model (SS) △ SS (K=0.42) ◯ KALJ (K=0.27) ▽ NTW (K=0.09)

  7. 4-point correlations for Dynamic Heterogeneities(2000 ~ ) Glotzer, Berthier, Bilori, Chandler, Sastry, Szamel, ... Kim-Saito, JCP(2013) mobile Schematic illustration of DH (Ediger) ξ Low T χ ( q ) 4 t mobile High T t=0 ξ fluctuations in “local dynamics” δ F(k, t) F ( k, t ) = S ( k ) × exp[( − t/ τ α ) β ] F r ( k, t ) = F ( k, t ) + δ F r ( k, t ) correlations of fluctuations in 2-point → 4-point χ ( q ) 4 ( k, t ) = h δ F q ( k, t ) δ F − q ( k, t ) i We need 4-point correlations to determine length time scales of DH!!

  8. 3-time extension of 4-point correlations Kim-Saito, PRE(2009), JCP(2010), JCP(2013) mobile Mizuno-Yamamoto, PRE(2011) time interval: t ξ t mobile t=0 0 scan time: τ Variance of F(k, t) → 4-point (1-time interval) χ 4 ( t ) � � δ F ( k, t ) 2 � F ( k, t ) = S ( k ) × exp[( − t/ τ α ) β ] ∼ exp[ − τ / τ hetero ]? τ hetero vs τ α ? We need 3-time correlations to determine time scales of DH!!

  9. Lifetime of Dynamic Heterogeneity remains controversial... ✓ τ hetero . τ α ‣ Perera-Harrowell (binary soft discs) ‣ Flenner-Szamel (Kob-Andersen LJ) ‣ Doliwa-Heuer (hard discs) ‣ Weeks (colloidal glasses) ✓ at low T τ hetero � τ α ‣ Yamamoto-Onuki, Mizuno-Yamamoto (binary soft spheres) ‣ Leonard-Berthier (fragile KCM model) ‣ Ediger, Richert, ... (NMR, hole-burning, photo-bleach) ‣ Orrit, Kaufman, ... (single molecule experiments) To resolve all controversy, we comprehensively examine multi-time correlation functions!!

  10. Why use multi-time correlations?: On the analogy of 2D-NMR and 2D-IR spectroscopies 3-time extension of χ 4 (t) F 4 ( k, t 3 , t 2 , t 1 ) = h ρ k ( τ 3 ) ρ − k ( τ 2 ) ρ k ( τ 1 ) ρ − k (0) i mobile ∆ F ( k, t 3 , t 2 , t 1 ) = F 4 ( k, t 3 , t 2 , t 1 ) − F ( k, t 1 ) F ( k, t 3 ) t 1 t 2 t 3 time τ 2 0 τ 1 τ 3 Key strategies: ① Analyze couplings of t 1 - t 3 motions mobile if homogeneous dynamics, Δ F → 0 ② Change the waiting time t 2 quantify relaxation time of DH τ hetero

  11. [WAHN fragile glasses] Change the waiting time t 2 : How dose Dynamical Heterogeneity decay with time? t 1 t 2 t 3 DH still survives for time scale longer than τ α !! τ hetero > τ α τ 2 0 τ 1 τ 3 T=0.58 (low T )

  12. [NTW strong glasses] Change the waiting time t 2 : How dose Dynamical Heterogeneity decay with time? t 1 t 2 t 3 DH decays much faster than τ α even at low T !! τ hetero < τ α τ 2 0 τ 1 τ 3 T=0.32 (low T )

  13. Result: Average lifetime τ hetero Z Z “Volume” of heterogeneous dynamics: ∆ hetero ( t 2 ) = ∆ F ( k, t 3 , t 2 , t 1 ) dt 1 dt 3 ☐ ! WAHN (K=0.64) △ SS (K=0.42) ◯ KALJ (K=0.27) Low T ▽ NTW (K=0.09) Low T fragility Low T Low T ∆ hetero ( t 2 ) ∆ hetero (0) ∼ exp[ − ( t 2 / τ hetero ) β ]

  14. Discussion: Is DH related to Locally Preferred Structures? Coslovich-Pastore, JCP(2007) Kim-Saito, JCP(2013) ☐ ! WAHN (K=0.64) KALJ WAHN(icosahedron) △ SS (K=0.42) ◯ KALJ (K=0.27) ▽ NTW (K=0.09) fragility τ α !● ! KALJ ☐ ! WAHN fragility !● ! KALJ τ LS / τ α ◯ ! WAHN Are long-lived icosahedral LPSs related to τ hetero ? T g / T

  15. �� � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � �� � � � � � � � � � � � � � � � � Discussion: Is DH related to Locally Preferred Structures? Leocmach-Tanaka, Nat. Commun.(2012) Kim-Saito, JCP(2013) b ☐ ! WAHN (K=0.64) △ SS (K=0.42) ◯ KALJ (K=0.27) ▽ NTW (K=0.09) fragility Icosahedra Crystal-like - - d b der 1.4 1.2 � r 2 ( w 6 , t dh )/ �� r 2 ( t dh ) � bulk 1 0.8 0.6 (4) (4) 0.4 0.2 Icosahedron w * w dod 6 6 0 Are long-lived icosahedral − 5 − 4 − 3 − 2 − 1 0 10 2 · w 6 LPSs related to τ hetero ? d PMMA polydisperse colloids

  16. Summary: Dynamic Heterogeneities and Fragility P. G. Debenedetti and F. H. Stillinger, ☐ ! WAHN (K=0.64) Nature 410, 259-267 (2001) △ SS (K=0.42) ◯ KALJ (K=0.27) ▽ NTW (K=0.09) Log(Viscosity in poise) fragility T g / T K. Kim and S. Saito, J. Chem. Phys. 138, 12A506 (2013)

Recommend


More recommend