rodrigo ba
play

Rodrigo Ba Purdue University Department of Mathematics West - PowerPoint PPT Presentation

Stability inequalities for martingales and Riesz transforms nuelos Rodrigo Ba Purdue University Department of Mathematics West Lafayette, IN. 47906 May 19, 2017 With Adam Ose kowski Partially supported by NSF R. Ba


  1. Stability inequalities for martingales and Riesz transforms ∗ nuelos † Rodrigo Ba˜ Purdue University Department of Mathematics West Lafayette, IN. 47906 May 19, 2017 ∗ With Adam Ose ¸kowski † Partially supported by NSF R. Ba˜ nuelos (Purdue) May 19, 2017

  2. Stability (quantitative/deficit) sharp inequalities R. Ba˜ nuelos (Purdue) May 19, 2017

  3. Stability (quantitative/deficit) sharp inequalities Optimal/sharp inequalities Suppose you have two functionals E and F on some normed (real) linear space M satisfying the functional inequality E � F in the sense that E ( x ) � F ( x ) , ∀ x ∈ M . The functional inequality E � F is sharp if for all λ < 1 there exist x ∈ M such that E ( x ) > λ F ( x ) The subset M 0 = { x ∈ M : E ( x ) = F ( x ) } is called the set of optimizers (extremals) of the inequality. When M 0 � = ∅ , the inequality is said to be optimal. (Note: An optimal functional inequality is sharp but not vice–versa.) R. Ba˜ nuelos (Purdue) May 19, 2017

  4. Definition Let d be a metric on M (not necessarily the norm metric) and Φ a “rate function.” The optimal functional inequality E � F is ( d, Φ) – stable if F ( x ) − E ( x ) � Φ( d ( x, M 0 )) , ∀ x ∈ M In various examples, Φ( t ) = ct 2 and d ( x, y ) = � x − y � M and z ∈M 0 � x − z � 2 F ( x ) − E ( x ) � c inf M . R. Ba˜ nuelos (Purdue) May 19, 2017

  5. Definition Let d be a metric on M (not necessarily the norm metric) and Φ a “rate function.” The optimal functional inequality E � F is ( d, Φ) – stable if F ( x ) − E ( x ) � Φ( d ( x, M 0 )) , ∀ x ∈ M In various examples, Φ( t ) = ct 2 and d ( x, y ) = � x − y � M and z ∈M 0 � x − z � 2 F ( x ) − E ( x ) � c inf M . Classical Sobolev in R n ( n � 3 ). n = n ( n − 2) k 2 | S n − 1 | 4 k 2 n � f � 2 n − 2 � �∇ f � 2 ∀ f ∈ H 1 0 ( R n ) = M , 2 , 2 n M 0 = { x → c ( a + b | x − x 0 | 2 ) − ( n − 2) / 2 , a, b > 0 , x 0 ∈ R n , c ∈ R } Optimality: Aubin (1976), Talenti (1976). Stability: Biachi-Egnell (1990) �∇ f � 2 2 − k 2 n � f � 2 g ∈M 0 �∇ ( f − g ) � 2 n − 2 � C inf 2 n 2 R. Ba˜ nuelos (Purdue) May 19, 2017

  6. More general Sobolev ( 0 < α < n/ 2 ). n − 2 α � k n,α � ( − ∆) α/ 2 f � 2 � f � 2 n Optimality: Lieb (1983), Stability: Cheng-Frank-Weth (2013) Hardy-Littlewood-Sobolev Optimality: Lieb (1983). Stability: Carlen (2016), Log-Sobolev Gross (1975), Stability Fathi-Indrei-Ledoux (2015), Nash Optimality: Carlen-Loss (1993). Stability: Carlen-Lieb (2017) Housdorff-Young inequality: Sharpness Beckner 1975 (Lieb 1990) Stability: p Chris 2015. 1 � p � 2 , q = p − 1 � ˆ f � q � ( A p ) n � f � p A p = p 1 / 2 p q − 1 / 2 q A p is best contacts. Extremizers are general Gaussians: g ( x ) = ce Q ( x )+ x · v . R. Ba˜ nuelos (Purdue) May 19, 2017

  7. More general Sobolev ( 0 < α < n/ 2 ). n − 2 α � k n,α � ( − ∆) α/ 2 f � 2 � f � 2 n Optimality: Lieb (1983), Stability: Cheng-Frank-Weth (2013) Hardy-Littlewood-Sobolev Optimality: Lieb (1983). Stability: Carlen (2016), Log-Sobolev Gross (1975), Stability Fathi-Indrei-Ledoux (2015), Nash Optimality: Carlen-Loss (1993). Stability: Carlen-Lieb (2017) Housdorff-Young inequality: Sharpness Beckner 1975 (Lieb 1990) Stability: p Chris 2015. 1 � p � 2 , q = p − 1 � ˆ f � q � ( A p ) n � f � p A p = p 1 / 2 p q − 1 / 2 q A p is best contacts. Extremizers are general Gaussians: g ( x ) = ce Q ( x )+ x · v . Brasco &De Philippis (2016). Torsional rigidity for Brownian motion. � � E z ( τ D ) dz � C n A ( D ) 2 E z ( τ D ∗ ) dz − D ∗ D ( Fraenkel Asymmetry) A ( D ) := inf {| D △ B | : B is a ball with | B | = | D |} . | D | Problem: Prove “it” for stable processes (any subordination of BM). R. Ba˜ nuelos (Purdue) May 19, 2017

  8. Martingales: Sharp (but not optimal, i.e., M 0 = ∅ )) inequalities. (Reference: A. Ose ¸kowski, “Sharp martingale and semimartingale inequalities” , Monografie Matematyczne 72 , Birkh¨ auser, 2012.) Doob { f n } an L p , 1 < p � ∞ martingale. f ∗ = sup n | f n | maximal function. p � f ∗ � p � p − 1 � f � p Burkholder (1984), Wang (1991 for dyadic): Inequality is sharp. But M 0 = ∅ . Burkholder (1966) S ( f ) = ( � n ( f n − f n − 1 ) 2 ) 1 / 2 a p � f � p � � S ( f ) � p � b p � f � p 1 < p < ∞ Many sharp versions of these exists but none are optimal i.e., M 0 = ∅ , outside of the trivial case of p = 2 . (The first sharp case of these for Brownian martingales/stochastic integrals is due to B. Davis (1976).) R. Ba˜ nuelos (Purdue) May 19, 2017

  9. X , Y c´ adl´ ag (right continuous/left limits) martingales: Y is differentially subordinate to X ( Y << X ), if the process { [ X, X ] t − [ Y, Y ] t } t � 0 is nonnegative and nondecreasing in t . They are orthogonal ( Y ⊥ X ) if [ X, Y ] = 0 . 1 < p < ∞ and . p ∗ = max { p, p/ ( p − 1) } . Set || X || p = sup t � 0 || X t || p Burkholder (1984) Y << X || Y || p � ( p ∗ − 1) || X || p . The constant ( p ∗ − 1) is best possible. Furthermore, the inequality is always strict unless p = 2 . That is, inequality is sharp and M 0 = ∅ unless p = 2 . R.B. G. Wang (1995) Y << X and Y ⊥ X � π � || Y || p � cot || X || p . 2 p ∗ � � π The constant cot is the best possible. Furthermore, the inequality is always 2 p ∗ strict unless p = 2 unless p = 2 . That is, inequality is sharp and M 0 = ∅ unless p = 2 . R. Ba˜ nuelos (Purdue) May 19, 2017

  10. A careful analysis of proofs reveals that “almost” extremals used to proof sharpness are “almost” eigenfunctions. The dyadic maximal function in R n (dyadic martingales). � M d ( f )( x ) = sup { 1 | f ( y ) | dy : x ∈ Q, Q ∈ [0 , 1] n , dyadic cube } | Q | Q p Doob (for inequality) Wang (1995) for sharpness: � M d ( f ) � p � p − 1 � f � p , 1 < p � ∞ . (Here we may restrict to non-negative functions.) A. Melas (2015): If you take a sequence { f n } of almost externals then p lim n � M d ( f n ) − p − 1 f n � p = 0 Theorem (Melas 2015) Fix 2 < p < ∞ , ǫ > 0 (small enough). Suppose f � 0 (in L p ) is such that � � p � M d ( f ) � p � p − 1 − ε � f � p . Then p p − 1 f � p � c p ε 1 /p � f � p � M d ( f ) − for some constant c p depending only on p . R. Ba˜ nuelos (Purdue) May 19, 2017

  11. Theorem (A.Ose ¸kowski & R.B. 2016: Y << X ) 1 (i) Let 1 < p < 2 and ε > 0 . || Y || p � ( p − 1 − ε ) || X || p . Then � �� �� � 1 � | Y ∞ | − � p � c p ε 1 / 2 || X || p . ( p − 1) | X ∞ | O ( ε 1 / 2 ) as ε → 0 is sharp. c p = O ((2 − p ) − 1 / 2 ) as p ↑ 2 and this is sharp. (ii) Let 2 < p < ∞ and ε > 0 . || Y || p � ( p − 1 − ε ) || X || p . � �� � �� � | Y ∞ | − ( p − 1) | X ∞ | � p � c p ε 1 /p || X || p , O ( ε 1 /p ) as ε → 0 is sharp. c p is O (( p − 2) − 1 /p ) as p ↓ 2 and O ( p ) as p → ∞ . These orders are sharp. (iii) For p = 2 , no c 2 and κ exist such that || Y || 2 � (1 − ε ) || X || 2 implies � �� � �� � | Y ∞ | − | X ∞ | � 2 � c 2 ε κ || X || 2 . In fact, there exist martingales Y and X , Y << X , such that �| Y | − | X |� 2 � Y � 2 = � X � 2 , and > 0 ( independent of ε ) � X � 2 R. Ba˜ nuelos (Purdue) May 19, 2017

  12. ¸kowski & R.B. 2016: Y << X and Y ⊥ X ) Theorem (A.Ose (i) � � � � � π � � � � � � � � � � c p ε 1 / 2 || X || p , 1 < p < 2 , � | Y ∞ | − tan | X ∞ | � � � 2 p p if X and Y are such that � � π � � || Y || p � − ε || X || p . tan 2 p Orders in ε as ε → 0 , and c p , as p ↑ 2 , are best possible. (ii) � � � � � π � � � � � � � � � � c p ε 1 /p || X || p , 2 < p < ∞ , � | Y ∞ | − cot | X ∞ | � � � 2 p p if � � cot π || Y || p � 2 p − ε || X || p (iii) As in previous theorem, no such estimate exists for p = 2 . R. Ba˜ nuelos (Purdue) May 19, 2017

  13. Beurling-Ahlfors operator in complex plane C � Bf ( z ) = − 1 f ( w ) π p.v. ( z − w ) 2 d w. C It is a Calderón-Zygmund singular integral and � Bf � p � C p � f � p , 1 < p < ∞ . Conjecture T. Iwaniec 1984 The operator norm of B on L p is p ∗ − 1 : � B � p → p = ( p ∗ − 1) , 1 < p < ∞ Known: ( p ∗ − 1) � � B � p → p � 1 . 575( p ∗ − 1) Lower bound O. Lehto (1965) upper bound R.B and P. Janakiraman (2008). Lehto’s functions used to prove the lower bound have the property that | Bf ( z ) | ≈ ( p ∗ − 1) | f ( z ) | . That is, they are “near eigenfunctions.” R. Ba˜ nuelos (Purdue) May 19, 2017

Recommend


More recommend