robust optimal power flow with uncertain renewables
play

Robust Optimal Power Flow with Uncertain Renewables Daniel - PowerPoint PPT Presentation

Robust Optimal Power Flow with Uncertain Renewables Daniel Bienstock, Misha Chertkov, Sean Harnett Columbia University, LANL Dimacs Workshop on Energy Infrastructure Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power


  1. Robust Optimal Power Flow with Uncertain Renewables Daniel Bienstock, Misha Chertkov, Sean Harnett Columbia University, LANL Dimacs Workshop on Energy Infrastructure Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  2. Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  3. CIGRE -International Conference on Large High Voltage Electric Systems ’09 Large unexpected fluctuations in wind power can cause additional flows through the transmission system (grid) Large power deviations in renewables must be balanced by other sources, which may be far away Flow reversals may be observed – control difficult A solution – expand transmission capacity! Difficult (expensive), takes a long time Problems already observed when renewable penetration high Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  4. CIGRE -International Conference on Large High Voltage Electric Systems ’09 “Fluctuations” – 15-minute timespan Due to turbulence (“storm cut-off”) Variation of the same order of magnitude as mean Most problematic when renewable penetration starts to exceed 20 − 30% Many countries are getting into this regime Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  5. Optimal power flow (economic dispatch, tertiary control) Used periodically to handle the next time window (e.g. 15 minutes, one hour) Choose generator outputs Minimize cost (quadratic) Satisfy demands, meet generator and network constraints Constant load (demand) estimates for the time window Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  6. OPF: min c ( p ) (a quadratic) s.t. B θ = p − d (1) | y ij ( θ i − θ j ) | ≤ u ij for each line ij (2) P min ≤ p g ≤ P max for each bus g (3) g g Notation: p = vector of generations ∈ R n , d = vector of loads ∈ R n B ∈ R n × n , (bus susceptance matrix)  − y ij , ij ∈ E (set of lines)  � i = j ∀ i , j : B ij = k ; { k , j }∈E y kj , 0 , otherwise  Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  7. min c ( p ) (a quadratic) s.t. B θ = p − d | y ij ( θ i − θ j ) | ≤ u ij for each line ij P min ≤ P max ≤ p g for each bus g g g Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  8. min c ( p ) (a quadratic) s.t. B θ = p − d | y ij ( θ i − θ j ) | ≤ u ij for each line ij P min ≤ P max ≤ p g for each bus g g g How does OPF handle short-term fluctuations in demand (d)? Frequency control: Automatic control: primary, secondary Generator output varies up or down proportionally to aggregate change How does OPF handle short-term fluctuations in renewable output? Answer: Same mechanism, now used to handle aggregate wind power change Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  9. Wind model? Need to model variation in wind power between dispatches Wind at farm attached to bus i of the form µ i + w i – Weibull distribution? Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  10. Wind model From CIGRE report, aggregated over Germany: Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  11. Experiment Bonneville Power Administration data, Northwest US data on wind fluctuations at planned farms with standard OPF, 7 lines exceed limit ≥ 8% of the time Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  12. Line limits and line tripping If power flow in a line exceeds its limit, the line becomes compromised and may ’trip’. But process is complex and time-averaged: Thermal limit is most common Thermal limit may be in terms of terminal equipment, not line itself Wind strength and wind direction contributes to line temperature In medium-length lines ( ∼ 100 miles) the line limit is due to voltage drop, not thermal reasons In long lines, it is due to phase angle change (stability), not thermal reasons In 2003 U.S. blackout event, many critical lines tripped due to thermal reasons, but well short of their line limit Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  13. Line trip model summary: exceeding limit for too long is bad, but complicated want: ”fraction time a line exceeds its limit is small” proxy: prob(violation on line i ) < ǫ for each line i Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  14. Goals simple control aware of limits not too conservative computationally practicable Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  15. Control For each generator i , two parameters: p i = mean output α i = response parameter Real-time output of generator i : � p i = p i − α i ∆ ω j j where ∆ ω j = change in output of renewable j (from mean). � α i = 1 i ∼ primary + secondary control Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  16. Set up control Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  17. Computing line flows wind power at bus i : µ i + w i DC approximation B θ = p − d +( µ + w − α � i ∈ G w i ) θ = B + (¯ p − d + µ ) + B + ( I − α e T ) w flow is a linear combination of bus power injections: f ij = y ij ( θ i − θ j ) Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  18. Computing line flows � � ( B + i − B + j ) T (¯ p − d + µ ) + ( A i − A j ) T w f ij = y ij , A = B + ( I − α e T ) Given distribution of wind can calculate moments of line flows: E f ij = y ij ( B + i − B + j ) T (¯ p − d + µ ) var ( f ij ) := s 2 ij ≥ y 2 k ( A ik − A jk ) 2 σ 2 � ij k (assuming independence) and higher moments if necessary Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  19. Chance constraints to deterministic constraints chance constraint: P ( f ij > f max ) < ǫ ij and P ( f ij < − f max ) < ǫ ij ij ij from moments of f ij , can get conservative approximations using e.g. Chebyshev’s inequality Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  20. Chance constraints to deterministic constraints chance constraint: P ( f ij > f max ) < ǫ ij and P ( f ij < − f max ) < ǫ ij ij ij from moments of f ij , can get conservative approximations using e.g. Chebyshev’s inequality for Gaussian wind, can do better, since f ij is Gaussian : | E f ij | + var ( f ij ) φ − 1 (1 − ǫ ij ) ≤ f max ij Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  21. Formulation: Choose mean generator outputs and control to minimize expected cost, with the probability of line overloads kept small. min p ,α E [ c ( p )] � s.t. α i = 1 , α ≥ 0 i ∈ G B δ = α, δ n = 0 � � � p i + µ i = d i i ∈ G i ∈ W i ∈ D f ij = y ij ( θ i − θ j ) , B θ = p + µ − d , θ n = 0 s 2 ij ≥ y 2 � σ 2 k ( B + ik − B + jk − δ i + δ j ) 2 ij k ∈ W | f ij | + s ij φ − 1 (1 − ǫ ij ) ≤ f max ij Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  22. Data errors? � s 2 ij ≥ y 2 σ 2 k ( B + ik − B + jk − δ i + δ j ) 2 ij k ∈ W | f ij | + s ij φ − 1 (1 − ǫ ij ) ≤ f max ij (the f ij implicitly incorporate the µ i ) Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  23. Data errors? � s 2 ij ≥ y 2 σ 2 k ( B + ik − B + jk − δ i + δ j ) 2 ij k ∈ W | f ij | + s ij φ − 1 (1 − ǫ ij ) ≤ f max ij (the f ij implicitly incorporate the µ i ) What if the µ i or the σ k are incorrect? ... What happens to Prob ( f ij > u ij )? Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  24. Let the correct parameters be ˜ µ i , ˜ σ i for each farm i . Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  25. Let the correct parameters be ˜ µ i , ˜ σ i for each farm i . Theorem: Suppose there are parameters M > 0 , V > 0 such that σ 2 | ¯ µ i − µ i | < M µ i and | ¯ i − σ i | < V σ i for all i . Then: Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

  26. Let the correct parameters be ˜ µ i , ˜ σ i for each farm i . Theorem: Suppose there are parameters M > 0 , V > 0 such that σ 2 | ¯ µ i − µ i | < M µ i and | ¯ i − σ i | < V σ i for all i . Then: Prob ( f ij > f max ) < ǫ ij + O ( V ) + O ( M ) ij Bienstock, Harnett, Chertkov Columbia University, LANL Robust Optimal Power Flow with Uncertain Renewables

Recommend


More recommend