uncertain systems and robust control lmi methods
play

Uncertain systems and robust control LMI methods Dimitri PEAUCELLE - PowerPoint PPT Presentation

Uncertain systems and robust control LMI methods Dimitri PEAUCELLE Relaxation Approaches for Control of Uncertain Complex Systems: Methodologies and Tools Workshop at 52nd IEEE Conference on Decision and Control Monday December 9, 2013,


  1. Uncertain systems and robust control LMI methods Dimitri PEAUCELLE Relaxation Approaches for Control of Uncertain Complex Systems: Methodologies and Tools Workshop at 52nd IEEE Conference on Decision and Control Monday December 9, 2013, Florence

  2. Introduction ■ Objectives of this presentation: ● Recall some existing results in robust control ● Demonstrate how to test these with RoMulOC toolbox http://projects.laas.fr/OLOCEP/romuloc/ ■ Underlying point of view: ● Few techniques ● Many results ● Depend on modeling choices D. Peaucelle 1 Florence, December 2013

  3. Outline ● Two classes of uncertain systems : polytopic & LFT ▲ Airplane example ▲ DEMETER satellite example ▲ Prospectives: descriptor uncertain modeling ● Robust analysis ▲ Stability and performances - the well-posedness point of view ▲ System augmentation approach for sequences of SOS-like relaxations ▲ "Slack variable" results and "quadratic stability" as a special case ● State-feedback design: multi-performance ▲ Based on dual system ▲ Almost LMI results in "slack variable" approach D. Peaucelle 2 Florence, December 2013

  4. Modeling of systems with uncertainties ■ Aircraft example ● Complicated non-linear model - linearized around operation point ( V o , ... ) ▲ 9 uncertain parameters: (Not precisely known parameters such as inertia etc. & uncertainties on operating point)   0 1 0 0   0 L p L β L r     x = ˙ x + Bu   g/ ( V o + v ) 0 Y β − 1     N ˙ β g/ ( V o + v ) N p N β + N ˙ β Y β N r − N ˙ β L p ≤ L p ≤ L p , L β ≤ L β ≤ L β ... ▲ Uncertainties given in intervals: D. Peaucelle 3 Florence, December 2013

  5. Modeling of systems with uncertainties   0 1 0 0   0 L p L β L r     x = ˙ x + Bu   g/ ( V o + v ) 0 Y β − 1     N ˙ β g/ ( V o + v ) N p N β + N ˙ β Y β N r − N ˙ β ● Affine-dependent representation with bounds given by interval analysis   0 1 0 0    0 α 22 α 23 α 23    x = ˙ x + Bu   α 31 0 α 33 − 1     α 41 α 42 α 43 α 44 L p ≤ α 22 ≤ L p . . . N ˙ β g/ ( V o + v ) ≤ α 41 ≤ N ˙ β g/ ( V o + v ) . . . ▲ Includes the original uncertain model but coupling between coefficients is lost ▲ Conservative: if a property is proved for polytopic model, it also holds for original one D. Peaucelle 4 Florence, December 2013

  6. Modeling of systems with uncertainties   0 1 0 0    0 α 22 α 23 α 23    x = ˙ x + Bu   α 31 0 α 33 − 1     α 41 α 42 α 43 α 44 α ij ≤ α ij ≤ α ij ● This is an interval model: all coefficients are independent and in intervals ● Sub-class of parallelotopic models (centered at A 0 with deviations along axes A 1 , A 2 etc.) A ( β ) = A 0 + β 1 A 1 + β 2 A 2 + . . . , β i ∈ [ − 1 1] ● Sub class of polytopic models described as convex hull of vertices (in ex. v = 2 9 = 512 !) v v � � ξ v A [ v ] A ( ξ ) = : ξ v = 1 , ξ v ≥ 0 v =1 v =1 ▲ Demo in RoMulOC D. Peaucelle 5 Florence, December 2013

  7. Modeling of systems with uncertainties   0 1 0 0   0 L p L β L r     x = ˙ x + Bu   g/ ( V o + v ) 0 Y β − 1     N ˙ β g/ ( V o + v ) N p N β + N ˙ β Y β N r − N ˙ β ● Linear-Fractional Transformation (LFT): make it linear in the uncertainties via feedback � w z � � � D. Peaucelle 6 Florence, December 2013

  8. Modeling of systems with uncertainties   0 1 0 0    0 L p L β L r    x = ˙ x + Bu   g/ ( V o + v ) 0 Y β − 1     N ˙ β g/ ( V o + v ) N p N β + N ˙ β Y β N r − N ˙ β ▲ Handling the 1 / ( V o + v ) terms. z 1 = 1 / ( V o + v ) x 1 ⇔ V o z 1 + vz 1 = x 1  w 1 = vz 1  ⇔ V o z 1 + w 1 = x 1    w 1 = vz 1 ⇔ z 1 = 1 /V o x 1 − 1 /V o w 1  D. Peaucelle 7 Florence, December 2013

  9. Modeling of systems with uncertainties   0 1 0 0    0 L p L β L r    x = ˙ x + Bu   g/ ( V o + v ) 0 Y β − 1     N ˙ β g/ ( V o + v ) N p N β + N ˙ β Y β N r − N ˙ β ▲ Handling the 1 / ( V o + v ) terms, continued w 1 = vz 1   0 1 0 0 0      0 L p L β L r 0         ˙ x  x  B    =  + g/V o 0 Y β − 1 − g/V o      z 1 w 1 0   N ˙ β g/V o N p N β + N ˙ β Y β N r − N ˙ − N ˙ β g/V o   β   1 /V o 0 0 0 − 1 /V o D. Peaucelle 8 Florence, December 2013

  10. Modeling of systems with uncertainties   0 1 0 0 0    0 L p L β L r 0           ˙ x  x  B    =  + g/V o 0 Y β − 1 − g/V o      z 1 w 1 0   N ˙ β g/V o N p N β + N ˙ β Y β N r − N ˙ − N ˙ β g/V o   β   1 /V o 0 0 0 − 1 /V o ▲ Handling the N ˙ β term: w 1 = vz 1 , w 2 = N ˙ β z 2   0 1 0 0 0 0     0 L p L β L r 0 0       x ˙ x     g/V o 0 Y β − 1 − g/V o 0  B        u    =  + z 1 w 1         0 N p N β N r 0 1 0     z 2 w 2   1 /V o 0 0 0 − 1 /V o 0     g/V o 0 Y β − 1 − g/V o 0 D. Peaucelle 9 Florence, December 2013

  11. Modeling of systems with uncertainties ▲ In the end w = ∆ z with ∆ = diag ( v, N ˙ β , Y β , L p , L β , L r , N p , N β , N r ) and   0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0       g/V o 0 0 − 1 − g/V o 0 1 0 0 0 0 0 0       0 0 0 0 0 1 0 0 0 0 1 1 1      1 /V o 0 0 0 − 1 /V o 0 0 0 0 0 0 0 0      g/V o 0 0 − 1 − g/V o 0 1 0 0 0 0 0 0   � � � � � � x ˙   x B   = + u 0 0 1 0 0 0 0 0 0 0 0 0 0   z w 0     0 1 0 0 0 0 0 0 0 0 0 0 0     0 0 1 0 0 0 0 0 0 0 0 0 0       0 0 0 1 0 0 0 0 0 0 0 0 0       0 1 0 0 0 0 0 0 0 0 0 0 0     0 0 1 0 0 0 0 0 0 0 0 0 0     0 0 0 1 0 0 0 0 0 0 0 0 0 ● LFT model is a feedback-loop of a purely uncertain matrix with purely certain system ▲ Can always be obtained if uncertainty enters rationally in the model ▲ Issue: having an LFT of minimal size (size of ∆ ) D. Peaucelle 10 Florence, December 2013

  12. Modeling of systems with uncertainties ● Manipulation LFT made easy using the star-product    M d M c  = M a + M b ∆( I − M d ∆) − 1 M c ∆ ⋆ M b M a ▲ Corresponds to the following loop:  z = M d w + M c u  w = ∆ z ⋆ y = M b w + M a u  � w z � u y ● Always assumed to be well-posed: ( I − M d ∆) non singular for all uncertainties D. Peaucelle 11 Florence, December 2013

  13. Modeling of systems with uncertainties ▲ Elementary operations on LFTs   � � � � � � M d M c 0 M d M c N d N c ∆ 1 0 ∆ 1 ⋆ + ∆ 2 ⋆ = ⋆  N d N c  0 M b M a N b N a ∆ 2 0 M b N b M a + N a   � � � � � � M d M c N b M c N a M d M c N d N c ∆ 1 0 ∆ 1 ⋆ · ∆ 2 ⋆ = ⋆  N d N c  0 M b M a N b N a ∆ 2 0 M b M a N b M a N a � � �� − 1 � � M d − M c M − 1 − M c M − 1 M d M c M b ∆ ⋆ = ∆ ⋆ a a M − 1 M − 1 M b M a M b a a ● Coded in Matlab’s Robust Control toolbox & in LFRToolbox ▲ Demo in Robust Control toolbox & RoMulOC Δ Δ 1 2 F Σ 1 Σ 2 1 ● Allows also to manipulated complex control schemes Δ 3 K D. Peaucelle 12 Florence, December 2013

  14. Modeling of systems with uncertainties ■ DEMETER: a satellite of the MYRIAD family developed by CNES ● All MYRIAD microsatellites share common plat- form (including the control components), the load is different (and the gains of the control law are tuned accordingly). ● On DEMETER the scientific load includes four long appendices that study the ionospheric distur- bances ( smsc.cnes.fr/DEMETER ). Fine pointing towards earth is required. ▲ CNES: French national space center - governmental ▲ Accepted to provide data about DEMETER to the scientific community, [PA06] ▲ It is purely a benchmark: no possible implementation (no more on orbit) D. Peaucelle 13 Florence, December 2013

  15. Modeling of systems with uncertainties ■ LAAS studies for the attitude control of DEMETER ● Uncertain modeling at small depointing errors ● Mixed H 2 /H ∞ reduced order control design (small depointing) [ADGH11] ● Robustness analysis of the uncertain LTI model in closed-loop (small depointing) [PBG + 10] ● Periodic control law design using reaction wheels and magneto torquers (medium to large depointing) [TAP + 11] ● Design of an adaptive control law replacing a commuting control (small to medium depointing) [PDPM11] D. Peaucelle 14 Florence, December 2013

Recommend


More recommend