rethinking naturalness
play

Rethinking naturalness Francesco Sannino Can the Higgs be - PowerPoint PPT Presentation

Rethinking naturalness Francesco Sannino Can the Higgs be elementary ? Francesco Sannino Plan Degrees of (un)naturality SM ado & Triviality Interacting UV-FP for Gauge-Yukawa theories Beyond asymptotic freedom Back to the drawing board


  1. Rethinking naturalness Francesco Sannino

  2. Can the Higgs be elementary ? Francesco Sannino

  3. Plan Degrees of (un)naturality SM ado & Triviality Interacting UV-FP for Gauge-Yukawa theories Beyond asymptotic freedom

  4. Back to the drawing board

  5. RG (un)-naturality L = 1 2( ∂ µ φ r ) 2 − 1 r − λ r + δ Z 2 ( ∂ µ φ r ) 2 − δ m r − δ λ 2 m 2 φ 2 4! φ 4 2 φ 2 4! φ 4 r √ m 2 ≡ m 2 δ λ ≡ λ 0 Z 2 − λ φ B ≡ Z φ r δ Z ≡ Z − 1 0 Z − δ m Z = 1 + f 1 ( λ , g i ) log Λ 2 δ m = f 2 ( λ , g i ) Λ 2 + . . . + . . . m 2 0 0 (1 + f 1 ( λ , g i ) log Λ 2 m 2 = m 2 ) − f 2 ( λ , g i ) Λ 2 m 2 0

  6. Shades of (un)naturality 0 (1 + f 1 ( λ , g i ) log Λ 2 m 2 = m 2 ) − f 2 ( λ , g i ) Λ 2 m 2 0 Standard model: cancel m 0 against cutoff Coleman-Weinberg (CW): idem with radiative EWSB Classical conformality* Λ = 0 , m 0 = 0 Delayed naturality = Veltman Cond. Pert. f 2 = 0 CW + Delayed naturality f 2 = 0 , m 0 = 0 *Without a UV completion is indistinguishable from cancelling against cutoff

  7. Natural theories 0 (1 + f 1 ( λ , g i ) log Λ 2 m 2 = m 2 ) − f 2 ( λ , g i ) Λ 2 m 2 0 A symmetry exists protecting f 2 = 0 Cutoff is physical as in composite models

  8. Degrees of naturality Classical CF (SSB via CW*) SM Higgs = pseudo-dilaton, With UV cutoff is unnatural Space of 4d theories Delayed naturality Perturbative quantum-CF Veltman** CW + Veltman Natural Susy/Technicolor New physics needed! * CW = Coleman-Weinberg **Perturbative cancellation of quadratic divergences

  9. Much ado for 5% 95% is unknown! Richer than 5%? Most likely!

  10. The Standard Model ado Fields: Gauge fields + fermions + scalars Interactions: Gauge: SU(3) x SU(2) x U(1) at EW scale Yukawa: Fermion masses/Flavour Culprit: Higgs Scalar self-interaction

  11. Two main issues EW scale stability UV triviality (Landau Pole) 0.4 Landau pole 0.3 α ( μ ) 0.2 0.1 0.0 0.0 0.5 1.0 Log ( μ / μ 0 )

  12. The Compositeness Solution EW scale = Composite scale UV non-interacting 0.4 Asymptotic freedom 0.3 α ( μ ) 0.2 0.1 Not ruled out 0.0 - 1.0 - 0.5 0.0 Arbey et al. 1502.04718 Log ( μ / μ 0 )

  13. Elementary solution ?

  14. Does an UV interacting safe 4D gauge theory exist?

  15. Can we lose asymptotic freedom?

  16. Exact Interacting UV Fixed Point in 4D Quantum Gauge Theories With D. Litim, 1406.2337, JHEP

  17. Gauge-Yukawa Template SU ( N C ) L YM = − 1 L F = i Tr [ Q γ µ D µ Q ] 2 Tr [ F µ ν F µ ν ] ∂ µ H † ∂ µ H ⇥ ⇤ L H = Tr ⇤ 2 ( H † H ) 2 ⇤ ( H † H ) ⇥ ⇥ L Self = − u Tr − v Tr � ⇥ ⇤ � L Y = y Tr Q L HQ R + h . c . Global symmetry SU ( N F ) × SU ( N F ) × U V (1)

  18. Veneziano Limit Normalised couplings v α v u = α h N F N F At large N 2 < + N C

  19. Non-Asymptotically Free t = ln µ β g = ∂ t α g = − B α 2 g µ 0 B < 0 B > 0 0.4 0.4 Landau pole Asymptotic freedom 0.3 0.3 α ( μ ) α ( μ ) 0.2 0.2 0.1 0.1 0.0 0.0 - 1.0 - 0.5 0.0 0.0 0.5 1.0 Log ( μ / μ 0 ) Log ( μ / μ 0 )

  20. Small parameters B = − 4 ✏ = N F − 11 3 ✏ N C 2 B < 0 ✏ > 0 0  ✏ ⌧ 1 0.4 0.3 α g ( μ ) 0.2 Landau Pole ? 0.1 0.0 0.0 0.5 1.0 Log ( μ / μ 0 )

  21. Can NL help? B = − 4 β g = − B α 2 g + C α 3 3 ✏ g 0  α ∗ i ff C < 0 g ⌧ 1 β g g = B ϵ ↵ ∗ C ∝ ✏ α g Impossible in Gauge Theories with Fermions alone Caswell, PRL 1974

  22. Add Yukawa " # ◆ 2 ✓ ◆ ✓ 11 4 25 + 26 � g = ↵ 2 3 ✏ + 3 ✏ ↵ g − 2 2 + ✏ ↵ y g � y = ↵ y [(13 + 2 ✏ ) ↵ y − 6 ↵ g ] Computation abides Weyl consistency conditions Osborn 89 & 91, Jack & Osborn 90 Antipin, Gillioz, Mølgaard, Sannino [a-theorem] 1303.1525 Antipin, Gillioz, Krog. Mølgaard, Sannino [SM vacuum stability] 1306.3234

  23. NLO - Fixed Points Gaussian fixed point ( α ∗ g , α ∗ y ) = (0 , 0) Interacting fixed point

  24. Linearised RG Flow ϑ = ∂β / ∂α | ∗ Stability Matrix

  25. Scaling exponents: UV completion Eigen values of M Irrelevant Relevant direction ϑ 1 < 0 t n a v e l e Irrelevant direction R ϑ 2 > 0 A true UV fixed point to this order

  26. NNLO - The scalars The scalar self-couplings Single trace Double trace Only single trace effect on Yukawa Double-trace coupling is a spectator

  27. NNLO - All direction UV Stable FP Fixed point Scaling exponents

  28. Double - trace and stability Is the potential stable at FP? Which FP survives?

  29. Moduli Classical moduli space Use U(N f )xU(N f ) symmetry If V vanishes on H c it will vanish for any multiple of it Litim, Mojaza, Sannino 1501.03061

  30. Ground state conditions at any Nf H c ∝ δ ij H c ∝ δ i 1 α ∗ h + α ∗ v 2 < 0 < α ∗ h + α ∗ v 1 Stability for α ∗ v 1

  31. UV critical surface (Ir)relevant directions implies UV lower dim. critical Near the fixed point

  32. Phase Diagram Irrelevant t n a v e l e R Apple Thunderbolt Cable (2.0 m) - White

  33. Separatrix = Line of Physics Globally defined line connecting two FPs x i r t a r a p e S

  34. Quantum Potential The QP obeys an exact RG equation γ = − 1 H c = φ c δ ij 2 d ln Z/d ln µ

  35. Resumming logs Dimensional analysis

  36. The Potential Lambert Function Effective gauge coupling

  37. Visualisation 1.0 � ��� ( ϕ � ) � ��� ( ϕ � ) 0.8 � �� ( μ � ) 1.15 � �� ( ϕ � ) 0.6 1.10 0.4 NLO 1.05 NNLO 0.2 0.0 1.00 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 ϕ � / μ � ϕ � / μ � QFT is controllably defined to arbitrary short scales

  38. Summary Gauge + fermion + scalars theories can be fund. at any energy scale Exact results: independent on any scheme choice Higgs mass squared operator is UV irrelevant Existence of UV nontrivial Gauge-Yukawa theories Discovered UV complete Non-Abelian QED-like theories

  39. Outlook Composite operators critical exponents, ... Extend to other gauge theories Extensions of the Standard Model Models of DM and/or Inflation, 1412.8034 & 1503.00702 Hope for asymptotic safe quantum gravity?

Recommend


More recommend