recovering the initial state of dynamical systems using
play

Recovering the initial state of dynamical systems using observers - PowerPoint PPT Presentation

Introduction Questions ? Recovering the initial state of dynamical systems using observers Ghislain Haine Institut Sup erieur de lA eronautique et de lEspace (ISAE) Department of Mathematics, Computer Science, Control Toulouse,


  1. Introduction Questions ? Recovering the initial state of dynamical systems using observers Ghislain Haine Institut Sup´ erieur de l’A´ eronautique et de l’Espace (ISAE) Department of Mathematics, Computer Science, Control Toulouse, France CDPS 2013 – July, 1-5 G. Haine Recovering initial state of dynamical systems

  2. Introduction Questions ? Introduction 1 Questions ? 2 G. Haine Recovering initial state of dynamical systems

  3. Introduction Questions ? Let X and Y be Hilbert spaces, A : D ( A ) → X be a skew-adjoint operator, C ∈ L ( X , Y ) be an observation operator, and τ > 0 be a positive real number. Conservative systems � ˙ z ( t ) = Az ( t ) , ∀ t ∈ [0 , ∞ ) , z (0) = z 0 ∈ X . Observation We observe z via y ( t ) = Cz ( t ) for all t ∈ [0 , τ ]. G. Haine Recovering initial state of dynamical systems

  4. Introduction Questions ? Let X and Y be Hilbert spaces, A : D ( A ) → X be a skew-adjoint operator, C ∈ L ( X , Y ) be an observation operator, and τ > 0 be a positive real number. Conservative systems � ˙ z ( t ) = Az ( t ) , ∀ t ∈ [0 , ∞ ) , z (0) = z 0 ∈ X . Observation We observe z via y ( t ) = Cz ( t ) for all t ∈ [0 , τ ]. G. Haine Recovering initial state of dynamical systems

  5. Introduction Questions ? Let X and Y be Hilbert spaces, A : D ( A ) → X be a skew-adjoint operator, C ∈ L ( X , Y ) be an observation operator, and τ > 0 be a positive real number. Conservative systems � ˙ z ( t ) = Az ( t ) , ∀ t ∈ [0 , ∞ ) , z (0) = z 0 ∈ X . Observation We observe z via y ( t ) = Cz ( t ) for all t ∈ [0 , τ ]. G. Haine Recovering initial state of dynamical systems

  6. Introduction Questions ? K. Ramdani, M. Tucsnak, and G. Weiss , Recovering the initial state of an infinite-dimensional system using observers , Automatica, 46 (2010), pp. 1616–1625. Intuitive representation 2 iterations, observation on [0 , τ ] . G. Haine Recovering initial state of dynamical systems

  7. Introduction Questions ? If the system is exactly observable in time τ , we can take for all γ > 0  z + n ( t ) = Az + n ( t ) − γ C ∗ Cz + ˙ n ( t ) + γ C ∗ y ( t ) , ∀ t ∈ [0 , τ ] ,  z + 0 (0) = z + 0 ∈ X , z + n (0) = z − n − 1 (0) ,  � ˙ n ( t ) = Az − n ( t ) + γ C ∗ Cz − n ( t ) − γ C ∗ y ( t ) , ∀ t ∈ [0 , τ ] , z − n ( τ ) = z + z − n ( τ ) , and then there exists α ∈ (0 , 1) such that n (0) − z 0 � ≤ α n � z + � z − 0 − z 0 � . G. Haine Recovering initial state of dynamical systems

  8. Introduction Questions ? Introduction 1 Questions ? 2 G. Haine Recovering initial state of dynamical systems

  9. Introduction Questions ? In this work we do not suppose any observability assumption . Then two questions arise naturally: Given arbitrary C and τ > 0 , does the algorithm converge ? 1 If it does, what is lim n →∞ z − n (0) , and how is it related to z 0 ? 2 Main result We answer these questions, and prove what the intuition suggests. G. Haine Recovering initial state of dynamical systems

  10. Introduction Questions ? In this work we do not suppose any observability assumption . Then two questions arise naturally: Given arbitrary C and τ > 0 , does the algorithm converge ? 1 If it does, what is lim n →∞ z − n (0) , and how is it related to z 0 ? 2 Main result We answer these questions, and prove what the intuition suggests. G. Haine Recovering initial state of dynamical systems

  11. Introduction Questions ? In this work we do not suppose any observability assumption . Then two questions arise naturally: Given arbitrary C and τ > 0 , does the algorithm converge ? 1 If it does, what is lim n →∞ z − n (0) , and how is it related to z 0 ? 2 Main result We answer these questions, and prove what the intuition suggests. G. Haine Recovering initial state of dynamical systems

  12. Introduction Questions ? Thanks for your attention ! G. Haine , Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint operator , Mathematics of Control, Signals, and Systems (MCSS), In Revision . G. Haine Recovering initial state of dynamical systems

Recommend


More recommend