Randomized Strategies for Cardinality Robustness in the Knapsack Problem Yusuke Kobayashi University of Tsukuba Kenjiro Takazawa Kyoto University ANALCO, Arlington, Virginia, USA Jan 11, 2016
Knapsack Problem 2 β’ Item set: πΉ π₯ π β’ Profit: π π β₯ 0 ( π β πΉ ) π π = 100 β’ Weight: π₯ π β₯ 0 ( π β πΉ ) 20 60 80 β’ Capacity: π· β₯ 0 70 50 20 50 ο¬ Family of feas. sets β± = {π β πΉ: π₯(π) β€ π·} π· π₯ π = β πβπ π₯ π ο¬ Problem 80 70 π = π π = β πβπ π π maximize π(π) 20 π = 100 subject to π β β± 60 50 50 ο NP-hard π = ο FPTAS
Cardinality Robustness 3 ο¬ Cardinality constraint |π| β€ π is given after choosing π ο π π : expensive β€ π items in π ο OPT π : optimal sol. Def π β β±, 0 < π½ β€ 1 100 ο π is π· - robust def βπ, π(π π ) β₯ π· β π OPT π 20 60 80 70 50 π π π ο robustness β π§π£π¨ 20 50 π πππ π π π· π(π 1 ) = 80 π OPT 1 = 100 80 70 π = π OPT 2 = 150 π(π 2 ) = 150 π = 100 20 π OPT 3 = 160 π(π 3 ) = 150 60 50 50 β¦ π = β¦ ο¨ Robustness = 0.8
Contents 4 ο¬ Introduction : Robust knapsack problem ο¬ Related Work ο Hassin, Rubinstein [2002]: Robust matching ο Kakimura, Makino [2013]: Robust independence system ο Matuschke, Skutella, Soto [2015]: Mixed strategy ο¬ Our Result : Mixed strategy for robust knapsack problem ο Upper/Lower bound for robustness ο Better than pure strategy ο¬ Concluding Remarks
Matching / Matroid Intersection 5 3 ο¬ Hassin, Rubinstein [2002] ο Matroid : greedy alg. ο¨ 1-robust 8 6 4 π ο¨ π ο Matching : maximizing β πβπ π π π -robust 5 π π is best possible π OPT 1 = 8 ο π(OPT 2 ) = 10 1 1 2 π : 0.8-robust π : 0.75-robust ο¬ Fujita, K, Makino [2013] π ο¨ π ο Matroid Intersection : maximizing β πβπ π π π -robust ο Computation of max robustness: NP-hard
Robust Independence System 6 π Def β β β±, def πΉ, β± : independence system π π β π, π β β± β π β β± ο¬ Kakimura, Makino [2013] π ο¨ π ο Ind. system : maximizing β πβπ π π π(β±) -robust π π(π) is best possible ο Def [Mestre 2006] π(π) β min. integer π satisfying π π π, π β β±, π β π β π π β βπ β π β π π s.t. π β€ π, π β π + π β β±
7 π(π) : Tractability of Independence System π ο¨ π ο¬ Kakimura, Makino [2013]: max. β πβπ π π π(β±) -robust π π ο Matroid: π β± = 1 ο Matching: π β± β€ 2 π π ο Intersection of π matroids: π β± β€ π ο Feasible sets of Knapsack Problem ο¨ π β± = π (arbitrarily large) π· π = π 1 , β¦ , π π π₯ π π = π· π π = π = π 0 (π₯ π 0 = π·) π = ο¬ Kakimura, Makino, Seimi [2012] ο Robust Knapsack Problem: weakly NP-hard + FPTAS
Mixed (or Randomized) Strategy 8 ο¬ Matuschke, Skutella, Soto [2015] : Zero-Sum game Alice: Choose π β β± Bob: Choose π (knowing π ) π(π(π)) ο¨ Aliceβs payoff = π(OPT π ) ο¬ Mixed Strategy = Distribution on β± ο¬ Choose π π with probability π π ο¨ robustness : 1 1 2 π π π β π π π π(π π (π)) min π π(OPT π ) = min π OPT 1 = 2 π(OPT π ) π π π(OPT 2 ) = 2 ο Ex. Choose π or π with prob. Β½ Robustness of π , π 1 2 β 1+ 1 1 2 β 2+ 1 2 β 2 2 β 2 2+ 2 min , = = 0.8535 β¦ 1 2 = 0.7071 β¦ 2 2 4
Mixed (or Randomized) Strategy 9 ο¬ Matuschke, Skutella, Soto [2015] 1. Choose π¦ in [0,1] uniformly at random β² β π π π βπ , and 2. For each π , set π π β log 2 π π , π π find π β β± maximizing πβ²(π) Round value π to power of two Thm [MSS 15] π The above mixed strategy is π¦π¨ π -robust for ο Matching 0.7213 β¦ ο Matroid intersection ο Strongly base orderable matroid parity etc. 1 cf. 2 = 0.7071 β¦
Contents 10 ο¬ Introduction : Robust knapsack problem ο¬ Related Work ο Hassin, Rubinstein [2002]: Robust matching ο Kakimura, Makino [2013]: Robust independence system ο Matuschke, Skutella, Soto [2015]: Mixed strategy ο¬ Our Result : Mixed strategy for robust knapsack problem ο Upper/Lower bound for robustness ο Better than pure strategy ο¬ Concluding Remarks
Mixed Strategy for Robust Knapsack Problem 11 π ο¬ Robustness of pure strategy: π(π) [Kakimura, Makino 13] π(β±) : arbitrarily large ο¬ Robustness of mixed strategy [Our result] π(π) : another π¦π©π‘ π¦π©π‘ π(π) π¦π©π‘ π¦π©π‘ π(π) 1. Upper bound π , π parameter of ind. sys. π¦π©π‘ π(π) π¦π©π‘ π(π) π π 2. Lower bound π π¦π©π‘ π(π) , π π¦π©π‘ π(π) : Design a strategy π π π Extend to ind. sys. : π π¦π©π‘ π(π) , π π¦π©π‘ π(π) , π π¦π©π‘ π(π)
Result 1. Upper Bound: Hard Instance 12 π· = π 2π Type Number Total profit π₯ π π π π π π₯ π π 2π π 2π π 2π 0 1 1 π 2πβ2 π 2πβ1 π 2 π 2π+1 1 π βΆ βΆ βΆ βΆ βΆ βΆ β¦ π 2πβ2π π 2πβπ π 2π π π π 2π+π π βΆ βΆ βΆ βΆ βΆ βΆ π π π 2π π π π 3π π 1 = π 2π , π πππ π 2π = π 3π π OPT 1 Thm [Our result] π π For any mixed strategy, robustness β€ πΌ+π + π΅ ο No mixed strategy can achieve constant robustness
Result 1. Upper Bound: Hard Instance 13 π· = π 2π Type Number Total profit π₯ π π π π π π₯ π π 2π π 2π π 2π 0 1 1 βΆ βΆ βΆ βΆ βΆ βΆ β¦ π 2πβ2π π 2πβπ π 2π π π π 2π+π π βΆ βΆ βΆ βΆ βΆ βΆ π π π 2π π π π 3π π 1 ο¨ π π = π΅ ππΌ π π π Thm [Our result] π π π For any mixed strategy, robustness β€ πΌ+π + π΅
Result 1. Upper Bound: Hard Instance 14 π· = π 2π Type Number Total profit π₯ π π π π π π₯ π π 2π π 2π π 2π 0 1 1 βΆ βΆ βΆ βΆ βΆ βΆ β¦ π 2πβ2π π 2πβπ π 2π π π π 2π+π π βΆ βΆ βΆ βΆ βΆ βΆ π π π 2π π π π 3π π 1 log π 2π = Ξ π log π ο¨ π π = π΅ ππ΅ log log π 2π = Ξ log π Thm [Our result] π For any mixed strategy, robustness β€ π΅
Result 1. Upper Bound: Hard Instance 15 π· = π 2π Type Number Total profit π₯ π π π π π π₯ π π 2π π 2π π 2π 0 1 1 βΆ βΆ βΆ βΆ βΆ βΆ β¦ π 2πβ2π π 2πβπ π 2π π π π 2π+π π βΆ βΆ βΆ βΆ βΆ βΆ π π π 2π π π π 3π π 1 log π 2π = Ξ π log π ο¨ π π = π΅ ππ΅ log log π 2π = Ξ log π Thm [Our result] π π¦π©π‘ π¦π©π‘ π π For any mixed strategy, robustness β€ π΅ = π π¦π©π‘ π π
16 Result 2. Lower Bound: π π π¦π©π‘ π(π) π’ π‘) π β log ( Strategy (A) π ο¬ βπ β 0,1, β¦ , π , choose π π = πππ π π β π with prob. π+π πΉ Thm [Our result] π’ OPT 2 π β π‘ π Robustness β₯ π+π : π‘ π = O log π(β±) ??? ο¨ NO OPT 2 0 β π‘ π β π· π β max{ π : π β β±} π β min π : π β β± β 1 Idea π(β±) =1 Choose small items in advance π : large π· /2
17 Result 2. Lower Bound: π π π¦π©π‘ π(π) Strategy (B) π’ π β 1. π β : optimal sol., π : heaviest π‘ elements 2. π 0 β π β : π₯ π 0 β€ π· β π₯(π) with max size π π‘ π log π β βπ 0 π· β² β π· β π₯(π 0 ) , πΉ β² β πΉ β π 0 , π β² β 3. π‘ π 4. βπ β 0,1, β¦ , πβ² , choose πππβ² π π β π βͺ π π with prob. π β² +π Thm [Our result] π· π π Robustness β₯ π β π(π β² +π) = π π¦π©π‘ π π π 0 π π cf. pure strategy: π(π) [Kakimura, Makino 13]
Contents 18 ο¬ Introduction : Robust knapsack problem ο¬ Related Work ο Hassin, Rubinstein [2002]: Robust matching ο Kakimura, Makino [2013]: Robust independence system ο Matuschke, Skutella, Soto [2015]: Mixed strategy ο¬ Our Result : Mixed strategy for robust knapsack problem ο Upper/Lower bound for robustness ο Better than pure strategy ο¬ Concluding Remarks
Recommend
More recommend