randomized strategies for
play

Randomized Strategies for Cardinality Robustness in the Knapsack - PowerPoint PPT Presentation

Randomized Strategies for Cardinality Robustness in the Knapsack Problem Yusuke Kobayashi University of Tsukuba Kenjiro Takazawa Kyoto University ANALCO, Arlington, Virginia, USA Jan 11, 2016 Knapsack Problem 2 Item set:


  1. Randomized Strategies for Cardinality Robustness in the Knapsack Problem Yusuke Kobayashi University of Tsukuba Kenjiro Takazawa Kyoto University ANALCO, Arlington, Virginia, USA Jan 11, 2016

  2. Knapsack Problem 2 β€’ Item set: 𝐹 π‘₯ 𝑓 β€’ Profit: π‘ž 𝑓 β‰₯ 0 ( 𝑓 ∈ 𝐹 ) π‘ž 𝑓 = 100 β€’ Weight: π‘₯ 𝑓 β‰₯ 0 ( 𝑓 ∈ 𝐹 ) 20 60 80 β€’ Capacity: 𝐷 β‰₯ 0 70 50 20 50  Family of feas. sets β„± = {π‘Œ βŠ† 𝐹: π‘₯(π‘Œ) ≀ 𝐷} 𝐷 π‘₯ π‘Œ = βˆ‘ π‘“βˆˆπ‘Œ π‘₯ 𝑓  Problem 80 70 π‘Œ = π‘ž π‘Œ = βˆ‘ π‘“βˆˆπ‘Œ π‘ž 𝑓 maximize π‘ž(π‘Œ) 20 𝑍 = 100 subject to π‘Œ ∈ β„± 60 50 50 οƒ˜ NP-hard π‘Ž = οƒ˜ FPTAS

  3. Cardinality Robustness 3  Cardinality constraint |𝒀| ≀ 𝒍 is given after choosing π‘Œ οƒ˜ π‘Œ 𝑙 : expensive ≀ 𝑙 items in π‘Œ οƒ˜ OPT 𝑙 : optimal sol. Def π‘Œ ∈ β„±, 0 < 𝛽 ≀ 1 100 οƒ˜ π‘Œ is 𝜷 - robust def βˆ€π’, 𝒒(𝒀 𝒍 ) β‰₯ 𝜷 βˆ™ 𝒒 OPT 𝒍 20 60 80 70 50 𝒒 𝒀 𝒍 οƒ˜ robustness ≝ 𝐧𝐣𝐨 20 50 𝒒 𝐏𝐐𝐔 𝒍 𝒍 𝐷 π‘ž(π‘Œ 1 ) = 80 π‘ž OPT 1 = 100 80 70 π‘Œ = π‘ž OPT 2 = 150 π‘ž(π‘Œ 2 ) = 150 𝑍 = 100 20 π‘ž OPT 3 = 160 π‘ž(π‘Œ 3 ) = 150 60 50 50 … π‘Ž = …  Robustness = 0.8

  4. Contents 4  Introduction : Robust knapsack problem  Related Work οƒ˜ Hassin, Rubinstein [2002]: Robust matching οƒ˜ Kakimura, Makino [2013]: Robust independence system οƒ˜ Matuschke, Skutella, Soto [2015]: Mixed strategy  Our Result : Mixed strategy for robust knapsack problem οƒ˜ Upper/Lower bound for robustness οƒ˜ Better than pure strategy  Concluding Remarks

  5. Matching / Matroid Intersection 5 3  Hassin, Rubinstein [2002] οƒ˜ Matroid : greedy alg.  1-robust 8 6 4 πŸ‘  𝟐 οƒ˜ Matching : maximizing βˆ‘ π’‡βˆˆπ’€ 𝒒 𝒇 πŸ‘ -robust 5 𝟐 πŸ‘ is best possible π‘ž OPT 1 = 8 οƒ˜ π‘ž(OPT 2 ) = 10 1 1 2 π‘Œ : 0.8-robust 𝑍 : 0.75-robust  Fujita, K, Makino [2013] πŸ‘  𝟐 οƒ˜ Matroid Intersection : maximizing βˆ‘ π’‡βˆˆπ’€ 𝒒 𝒇 πŸ‘ -robust οƒ˜ Computation of max robustness: NP-hard

  6. Robust Independence System 6 𝑍 Def βˆ… ∈ β„±, def 𝐹, β„± : independence system π‘Œ π‘Œ βŠ† 𝑍, 𝑍 ∈ β„± β‡’ π‘Œ ∈ β„±  Kakimura, Makino [2013] πŸ‘  𝟐 οƒ˜ Ind. system : maximizing βˆ‘ π’‡βˆˆπ’€ 𝒒 𝒇 𝝂(β„±) -robust 𝟐 𝝂(𝓖) is best possible οƒ˜ Def [Mestre 2006] 𝝂(𝓖) β‰œ min. integer 𝜈 satisfying π‘Œ 𝑍 π‘Œ, 𝑍 ∈ β„±, 𝑓 ∈ 𝑍 βˆ’ π‘Œ 𝑓 β‡’ βˆƒπ‘Ž βŠ† π‘Œ βˆ’ 𝑍 π‘Ž s.t. π‘Ž ≀ 𝜈, π‘Œ βˆ’ π‘Ž + 𝑓 ∈ β„±

  7. 7 𝝂(𝓖) : Tractability of Independence System πŸ‘  𝟐  Kakimura, Makino [2013]: max. βˆ‘ π’‡βˆˆπ’€ 𝒒 𝒇 𝝂(β„±) -robust π‘Œ 𝑍 οƒ˜ Matroid: 𝜈 β„± = 1 οƒ˜ Matching: 𝜈 β„± ≀ 2 𝑓 π‘Ž οƒ˜ Intersection of 𝑛 matroids: 𝜈 β„± ≀ 𝑛 οƒ˜ Feasible sets of Knapsack Problem  𝜈 β„± = 𝑁 (arbitrarily large) 𝐷 π‘Œ = 𝑓 1 , … , 𝑓 𝑁 π‘₯ 𝑓 𝑗 = 𝐷 𝑁 π‘Œ = 𝑍 = 𝑓 0 (π‘₯ 𝑓 0 = 𝐷) 𝑍 =  Kakimura, Makino, Seimi [2012] οƒ˜ Robust Knapsack Problem: weakly NP-hard + FPTAS

  8. Mixed (or Randomized) Strategy 8  Matuschke, Skutella, Soto [2015] : Zero-Sum game Alice: Choose π‘Œ ∈ β„± Bob: Choose 𝑙 (knowing π‘Œ ) π‘ž(π‘Œ(𝑙))  Alice’s payoff = π‘ž(OPT 𝑙 )  Mixed Strategy = Distribution on β„±  Choose π‘Œ 𝑗 with probability πœ‡ 𝑗  robustness : 1 1 2 π‘ž π‘Œ 𝑙 βˆ‘ 𝑗 πœ‡ 𝑗 π‘ž(π‘Œ 𝑗 (𝑙)) min 𝐅 π‘ž(OPT 𝑙 ) = min π‘ž OPT 1 = 2 π‘ž(OPT 𝑙 ) 𝑙 𝑙 π‘ž(OPT 2 ) = 2 οƒ˜ Ex. Choose π‘Œ or 𝑍 with prob. Β½ Robustness of π‘Œ , 𝑍 1 2 β‹…1+ 1 1 2 β‹…2+ 1 2 β‹… 2 2 β‹… 2 2+ 2 min , = = 0.8535 … 1 2 = 0.7071 … 2 2 4

  9. Mixed (or Randomized) Strategy 9  Matuschke, Skutella, Soto [2015] 1. Choose 𝑦 in [0,1] uniformly at random β€² ≔ πŸ‘ 𝒓 𝒇 βˆ’π’š , and 2. For each 𝑓 , set π‘Ÿ 𝑓 ≔ log 2 π‘ž 𝑓 , 𝒒 𝒇 find π‘Œ ∈ β„± maximizing π‘žβ€²(π‘Œ) Round value π‘ž to power of two Thm [MSS 15] 𝟐 The above mixed strategy is 𝐦𝐨 πŸ“ -robust for οƒ˜ Matching 0.7213 … οƒ˜ Matroid intersection οƒ˜ Strongly base orderable matroid parity etc. 1 cf. 2 = 0.7071 …

  10. Contents 10  Introduction : Robust knapsack problem  Related Work οƒ˜ Hassin, Rubinstein [2002]: Robust matching οƒ˜ Kakimura, Makino [2013]: Robust independence system οƒ˜ Matuschke, Skutella, Soto [2015]: Mixed strategy  Our Result : Mixed strategy for robust knapsack problem οƒ˜ Upper/Lower bound for robustness οƒ˜ Better than pure strategy  Concluding Remarks

  11. Mixed Strategy for Robust Knapsack Problem 11 𝟐  Robustness of pure strategy: 𝝂(𝓖) [Kakimura, Makino 13] 𝜈(β„±) : arbitrarily large  Robustness of mixed strategy [Our result] 𝝇(𝓖) : another 𝐦𝐩𝐑 𝐦𝐩𝐑 𝝂(𝓖) 𝐦𝐩𝐑 𝐦𝐩𝐑 𝝇(𝓖) 1. Upper bound 𝐏 , 𝐏 parameter of ind. sys. 𝐦𝐩𝐑 𝝂(𝓖) 𝐦𝐩𝐑 𝝇(𝓖) 𝟐 𝟐 2. Lower bound 𝛁 𝐦𝐩𝐑 𝝂(𝓖) , 𝛁 𝐦𝐩𝐑 𝝇(𝓖) : Design a strategy 𝟐 𝟐 𝟐 Extend to ind. sys. : 𝐏 𝐦𝐩𝐑 𝝂(𝓖) , 𝐏 𝐦𝐩𝐑 𝝇(𝓖) , 𝛁 𝐦𝐩𝐑 𝝇(𝓖)

  12. Result 1. Upper Bound: Hard Instance 12 𝐷 = 𝑁 2π‘ˆ Type Number Total profit π‘₯ 𝑓 π‘ž 𝑓 π‘ž 𝑓 π‘₯ 𝑓 𝑁 2π‘ˆ 𝑁 2π‘ˆ 𝑁 2π‘ˆ 0 1 1 𝑁 2π‘ˆβˆ’2 𝑁 2π‘ˆβˆ’1 𝑁 2 𝑁 2π‘ˆ+1 1 𝑁 ∢ ∢ ∢ ∢ ∢ ∢ … 𝑁 2π‘ˆβˆ’2𝑗 𝑁 2π‘ˆβˆ’π‘— 𝑁 2𝑗 𝑁 𝑗 𝑁 2π‘ˆ+𝑗 𝑗 ∢ ∢ ∢ ∢ ∢ ∢ 𝑁 π‘ˆ 𝑁 2π‘ˆ 𝑁 π‘ˆ 𝑁 3π‘ˆ π‘ˆ 1 = 𝑁 2π‘ˆ , π‘ž π‘ƒπ‘„π‘ˆ 𝑁 2π‘ˆ = 𝑁 3π‘ˆ π‘ž OPT 1 Thm [Our result] 𝟐 πŸ‘ For any mixed strategy, robustness ≀ 𝑼+𝟐 + 𝑡 οƒ˜ No mixed strategy can achieve constant robustness

  13. Result 1. Upper Bound: Hard Instance 13 𝐷 = 𝑁 2π‘ˆ Type Number Total profit π‘₯ 𝑓 π‘ž 𝑓 π‘ž 𝑓 π‘₯ 𝑓 𝑁 2π‘ˆ 𝑁 2π‘ˆ 𝑁 2π‘ˆ 0 1 1 ∢ ∢ ∢ ∢ ∢ ∢ … 𝑁 2π‘ˆβˆ’2𝑗 𝑁 2π‘ˆβˆ’π‘— 𝑁 2𝑗 𝑁 𝑗 𝑁 2π‘ˆ+𝑗 𝑗 ∢ ∢ ∢ ∢ ∢ ∢ 𝑁 π‘ˆ 𝑁 2π‘ˆ 𝑁 π‘ˆ 𝑁 3π‘ˆ π‘ˆ 1  𝝂 𝓖 = 𝑡 πŸ‘π‘Ό π‘Œ 𝑍 𝑓 Thm [Our result] π‘Ž 𝟐 πŸ‘ For any mixed strategy, robustness ≀ 𝑼+𝟐 + 𝑡

  14. Result 1. Upper Bound: Hard Instance 14 𝐷 = 𝑁 2π‘ˆ Type Number Total profit π‘₯ 𝑓 π‘ž 𝑓 π‘ž 𝑓 π‘₯ 𝑓 𝑁 2𝑁 𝑁 2𝑁 𝑁 2𝑁 0 1 1 ∢ ∢ ∢ ∢ ∢ ∢ … 𝑁 2π‘βˆ’2𝑗 𝑁 2π‘βˆ’π‘— 𝑁 2𝑗 𝑁 𝑗 𝑁 2𝑁+𝑗 𝑗 ∢ ∢ ∢ ∢ ∢ ∢ 𝑁 𝑁 𝑁 2𝑁 𝑁 𝑁 𝑁 3𝑁 𝑁 1 log 𝑁 2𝑁 = Θ 𝑁 log 𝑁  𝝂 𝓖 = 𝑡 πŸ‘π‘΅ log log 𝑁 2𝑁 = Θ log 𝑁 Thm [Our result] πŸ’ For any mixed strategy, robustness ≀ 𝑡

  15. Result 1. Upper Bound: Hard Instance 15 𝐷 = 𝑁 2π‘ˆ Type Number Total profit π‘₯ 𝑓 π‘ž 𝑓 π‘ž 𝑓 π‘₯ 𝑓 𝑁 2𝑁 𝑁 2𝑁 𝑁 2𝑁 0 1 1 ∢ ∢ ∢ ∢ ∢ ∢ … 𝑁 2π‘βˆ’2𝑗 𝑁 2π‘βˆ’π‘— 𝑁 2𝑗 𝑁 𝑗 𝑁 2𝑁+𝑗 𝑗 ∢ ∢ ∢ ∢ ∢ ∢ 𝑁 𝑁 𝑁 2𝑁 𝑁 𝑁 𝑁 3𝑁 𝑁 1 log 𝑁 2𝑁 = Θ 𝑁 log 𝑁  𝝂 𝓖 = 𝑡 πŸ‘π‘΅ log log 𝑁 2𝑁 = Θ log 𝑁 Thm [Our result] πŸ’ 𝐦𝐩𝐑 𝐦𝐩𝐑 𝝂 𝓖 For any mixed strategy, robustness ≀ 𝑡 = 𝐏 𝐦𝐩𝐑 𝝂 𝓖

  16. 16 Result 2. Lower Bound: 𝛁 𝟐 𝐦𝐩𝐑 𝝂(𝓖) 𝑒 𝑑) 𝑛 ≔ log ( Strategy (A) 𝟐  βˆ€π‘— ∈ 0,1, … , 𝑛 , choose 𝒀 𝒋 = 𝐏𝐐𝐔 πŸ‘ 𝒋 ⋅𝒕 with prob. 𝒏+𝟐 𝐹 Thm [Our result] 𝑒 OPT 2 𝑛 ⋅𝑑 𝟐 Robustness β‰₯ 𝒏+𝟐 : 𝑑 𝑛 = O log 𝜈(β„±) ???  NO OPT 2 0 ⋅𝑑 𝓖 βˆ… 𝐷 𝒖 ≔ max{ π‘Œ : π‘Œ ∈ β„±} 𝒕 ≔ min π‘Œ : π‘Œ βˆ‰ β„± βˆ’ 1 Idea 𝜈(β„±) =1 Choose small items in advance 𝑛 : large 𝐷 /2

  17. 17 Result 2. Lower Bound: 𝛁 𝟐 𝐦𝐩𝐑 𝝂(𝓖) Strategy (B) 𝑒 π‘Œ βˆ— 1. π‘Œ βˆ— : optimal sol., 𝑍 : heaviest 𝑑 elements 2. π‘Œ 0 βŠ† π‘Œ βˆ— : π‘₯ π‘Œ 0 ≀ 𝐷 βˆ’ π‘₯(𝑍) with max size 𝑍 𝑑 𝓖 log π‘Œ βˆ— βˆ’π‘Œ 0 𝐷 β€² ≔ 𝐷 βˆ’ π‘₯(π‘Œ 0 ) , 𝐹 β€² ≔ 𝐹 βˆ’ π‘Œ 0 , 𝑛 β€² ≔ 3. 𝑑 𝟐 4. βˆ€π‘— ∈ 0,1, … , 𝑛′ , choose 𝐏𝐐𝐔′ πŸ‘ 𝒋 ⋅𝒕 βˆͺ 𝒀 𝟏 with prob. 𝒏 β€² +𝟐 Thm [Our result] 𝐷 𝟐 𝟐 Robustness β‰₯ π‘Œ βˆ— πŸ“(𝒏 β€² +𝟐) = 𝛁 𝐦𝐩𝐑 𝝂 𝓖 π‘Œ 0 𝑍 𝟐 cf. pure strategy: 𝝂(𝓖) [Kakimura, Makino 13]

  18. Contents 18  Introduction : Robust knapsack problem  Related Work οƒ˜ Hassin, Rubinstein [2002]: Robust matching οƒ˜ Kakimura, Makino [2013]: Robust independence system οƒ˜ Matuschke, Skutella, Soto [2015]: Mixed strategy  Our Result : Mixed strategy for robust knapsack problem οƒ˜ Upper/Lower bound for robustness οƒ˜ Better than pure strategy  Concluding Remarks

Recommend


More recommend