radiation transfer with scattering process
play

Radiation Transfer with Scattering Process Yoshiaki Kato (NAOJ) - PowerPoint PPT Presentation

Radiation Transfer with Scattering Process Yoshiaki Kato (NAOJ) Radiation Transfer Equation with Scattering Process Line Profile Formation Scattering Processes Complete Frequency Re-Distribution (CRD) Partial


  1. Radiation Transfer with Scattering Process Yoshiaki Kato (NAOJ) ‣ Radiation Transfer Equation with Scattering Process ‣ Line Profile Formation ‣ Scattering Processes ✓ Complete “Frequency” Re-Distribution (CRD) ✓ Partial “Frequency” Re-Distribution (PRD) 1 Friday, September 14, 12

  2. Radiative Transfer Equations with Scattering Process “Classical” Radiative Transfer Equation I ν ( r , t ; n ) : specific intensity χ ν ( r , t ; n ) = κ ν + σ ν : extinction coe ffi cient Source Function ε ν ( r , t ; n ) : emissivity 2 Friday, September 14, 12

  3. Derivation of RT Equations #0 Description of the Radiation Field • Intensity I ( x, y, z, t ; θ , ϕ , ν ) dA d Ω dE = I dt dA d Ω d ν ( x, y, z ) ( θ , ϕ ) • Photon distribution function: f R I ( x , t ; n , ν ) = ch ν h 3 ν 2 c 3 f R ( x , t ; n , ν ) f R : 6-dimensional phase space 3 Friday, September 14, 12

  4. Derivation of RT Equations #1 Relation to Boltzmann Transport Equation • Boltzmann Transport Equation � Df R � ∂ f R ∂ t + v · ∂ f R ∂ x + F · ∂ f R ∂ p = Dt coll • Radiative Transfer Equation 1 ∂ I ∂ t + n · ∇ I = χ ( S − I ) c = η − χ I η ( x , t ; n , ν ) : emissivity χ ( x , t ; n , ν ) : opacity per unit length 4 Friday, September 14, 12

  5. v , ) p , n ; t x ( ( χ - ) p , n 1 x 1 7 o F ) 5 . 6 ( , 。 ) y , n ; t ; , a / n ( 十 ) 1 ∂ ∂ ▽ ( ) 尋 贈 ( n e ・ ) x p ( l r ・ = ) , ] n ; 1 , x ( f r o t 三 1 ∂ / ∂ ( ) 嶺 + ( o t s e c u ) 1 e ] ; 1 , z ( 1 ) 1 z ∂ / ) i ( . d り n i l p l a n o s n n e m i d - e a a 5 r . 6 7 ( , e e r h p s o m t a h s 1 o t a n i d r o s c n a i s e t e ま ゜ 郎 だ 十 ② 訂 十 ( だ ) だ ゜ n , £ + n y ; j 7 十 n , £ , ( 7 6 . 4 ) . 馬 r a ) z n 。 , w x n ( e r e h Themathematicalexpressionfor(∂/∂s)dependsongeometry.lnCar- ) c n ) I H ( n i e ( が e r a y r o , L 1 ( 0 ( , ) 3 L λ : 2 L ( , ) . 1 e o i g . n o i t a a h p o r p f o n T e i q n o i t a u e t r e f s n a r o t m f i n u e h t o v s t n e n o p t e c g e r i d e h t n c o l a n r o t 1 , h , 7 . 6 7 ’ ( n i e v i g e r a ) s t y 1 5 ( f i d r a a n i d r o n y i e 6 t f l ) 7 . 7 e ( 。 ) p , μ ; h o v e i s s i l n d p n a y t i c a ’ n ( ・ o i t a u 4 e . l a i t n e r n l i n s m r e t g i f r e t t a c s e f t i i h w , n o t e a u q e l a i l ( i a d l a i t r p 7 a s i ) 6 . 6 z 1 1 n t s r o f d a t ) 6 . 6 7 ( 。 a i z t o n y d a e s c r o a i d e m ) l s 1 ) ・ 1 , 1 ; , χ z ( 1 7 = ) ・ - ( , ) μ ; 1 4 ( f z z l 。 4 1 ; 1 , w t ) ) ・ = ] z ∂ / z l l , μ ; z ( 1 y ( [ ( j l , μ ; z ・ z λ - ) p , μ ; ∂ μ h i e v i t a v r a e d e m i t e c n g , n i d l e i y d b e p p o r d e e 1 t q n o i t a u e s r e f s n a r i d e a c - s o r c m a , l a c i s s t h p ) e d e h T . s i ∂ / ∂ ( e t a r v t g f o n e v i t a s u j n o i t o i l c c u s o t e n i e r e f e r s h m i e a n e m o n d p p t n a t r o t m c o o l o n e m n i e h p d n a , g c o c t l . r e t a a r a h c n i l u a l e h t a p t n d e n e p e d n i l n e ) i l p ) l a 3 g . 6 7 ( , h t - t s ; 工(x+△x,t+△t;n,y) FOUNDATIONSOFRADIATIONHYDRODYNAMICS ) ・ , n t B , 輿 ( 工 4 3 3 皿g.76.1Pencilofradiationpassingthroughamaterialelement. e a c n i d r o o a c s i s e s u a e i v a o r ) 1 ) l n r a e s u e w d p i d s e o t n o i s a e r p x e e t e i n a r o o c y r 丿 i I - t i b r a d n v s o ’ 1 ) : I , m a e t s y s e t i h s a ( r e f s n ° q l t e v i t a 5 u d v P ( n i n e i a g s i n o i t i a , h d i l a v e p t d n a , n i t i y ‘ s 1 1 a c i s a o l c e h t , f 3 4 e h t n i o p e t f m o r f n o i o v a t l e i f m u n i a u q f o w e t u 7 d s u c s i d o i o G . ) 9 4 - s o q a e r e f s n r n t e h t f o s n t r a n a u q d n , u e c n e r e f t m e n i h w f o e o e e , s t c e f r t h i s i d , n o t e a z i r a l o p r n r i , e c n e e s h o c , n o i c n a r h t f o n o s a s u c s i d t e p e i h n i s n o t p a m i c ) o r n i l l r c s e d y l b c e r r o c e i t e ) d c x e n A . e 3 . 6 7 ( y b Derivation of RT Equations #2 Classical, macroscopic, and phenomenological derivation [ I ( x + ∆ x , t + ∆ t ; n , ν ) − I ( x , t ; n , ν )] dSdtd ω d ν � 1 � ∂ I ( x , t ; n , ν ) + ∂ I ( x , t ; n , ν ) = dsdSdtd ω d ν c ∂ t ∂ s = [ η ( x , t ; n , ν ) − χ ( x , t ; n , ν ) I ( x , t ; n , ν )] dsdSdtd ω d ν 1 ∂ I ( x , t ; n , ν ) + ∂ I ( x , t ; n , ν ) = η ( x , t ; n , ν ) − χ ( x , t ; n , ν ) I ( x , t ; n , ν ) ∂ t ∂ s c 5 Friday, September 14, 12

  6. Derivation of RT Equations #3 Schematics of RT Equation with Scattering n ′ Scattering Scattering n χ S − χ I Absorption Emission x � � 1 � ∂ I I ( n ′ ) φ ( n , n ′ ) d Ω ∂ t + n · ∇ I = χ abs B + χ sca − ( χ abs + χ sca ) I c 1 ∂ I ∂ t + n · ∇ I = χ ( S − I ) c 6 Friday, September 14, 12

  7. Radiative Transfer Equations Opacity and Level populations Opacity � π e 2 � Φ ij ( ν ) : the spectral line profile function κ ( ν ij ) = n i f ij Φ ij ( ν ) m 0 c � 2 2 ν 2 � γ ν � � σ ( ν ) = π e 2 → π e 2 1 2 π 2 γ ν 0 � 2 f s f s ( ν − ν 0 ) 2 + ( γ / 4 π ) 2 0 ) 2 + ν 2 � γ m 0 c m 0 c 4 π ( ν 2 − ν 2 2 π Rate Equations (Spontaneous + Induced + Collisional rates) dn i � � � � � � dt = − n i A ij + B ij U ν ij + C ij n j A ji + B ji U ν ij + C ji + j � = i j � = i A ij , B ij : radiative processes C ij : collisional processes U ν ij radiation energy density in the range between h ν ij = ε i − ε j 7 Friday, September 14, 12

Recommend


More recommend