quantum transport and thermodynamics
play

Quantum Transport and Thermodynamics Giuliano Benenti Center for - PowerPoint PPT Presentation

Quantum Transport and Thermodynamics Giuliano Benenti Center for Nonlinear and Complex Systems, Univ. Insubria, Como, Italy INFN, Milano, Italy Outline 1) Basic thermodynamics of nonequilibrium states (linear response, Onsager relations,


  1. Local equilibrium Under the assumption of local equilibrium we can write phenomenological equations with ∇ T and ∇ µ rather than Δ T and Δ µ charge and heat current densities In this case we connect Onsager coefficients to electric and thermal conductivity rather than to conductances � j e � j h � � , σ = κ = � V � T � T =0 j e =0

  2. II. Landauer formalism (scattering theory)

  3. Scattering theory Scattering region connected to N terminals (reservoirs) Describes elastic scattering (including the effect of a disorder potential), but not electron-electron interactions beyond Hartree approximation and electron-phonon interactions

  4. Transmission matrix Probability for an electron with energy E to go from (transverse) mode m of reservoir j to mode n of reservoir i: scattering matrix elements transmission matrix elements probabilities Conservation of current and condition of zero current at zero bias from: From time reversal symmetry of the scatterer Hamiltonian:

  5. Landauer approach Electrical current into the scatterer from reservoir i: Fermi function Energy current into the scatterer from reservoir i: heat carried by an electron leaving reservoir i Heat current:

  6. Kirkhoff’s law of current conservation for (steady state) electrical and energy currents: Heat current not conserved: Heat dissipated in the reservoirs: entropy production rate Heat (not energy) current gauge invariant. The generated power equals heat and so is also gauge invariant.

  7. <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOygmML7VAymTtaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0gMRa5y04+5RSU1hiRJYb8wyLNYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS6iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBXTgCm7hHroQgoAEXuDNm3iv3vuqpq37uwEfsn7+Aap5IoM</latexit> <latexit sha1_base64="R9TBDumeJuZVdCYBPgayQaC/qc=">AB9XicbZBNS8MwHMb/nW9zTq2eBC/BIXhxtF7UgyDs4sHDlNUN1lHSLN3C0rQkqTBKvfhVvHhQ8at489uYvRx084GEh+dJSP6/MOVMacf5tkorq2vrG+XNylZ1e2fX3qs+qCSThHok4YnshFhRzgT1NOcdlJcRxy2g5HjUnfqRSsUS09DilvRgPBIsYwdpEgX3gU42DxpV76kcSk7wV3Bdmuy0Cu+bUnanQsnHnpgZzNQP7y+8nJIup0IRjpbquk+pejqVmhNOi4meKpiM8IB2jRU4pqXTyco0LFJ+ihKpFlCo2n6+0aOY6XGcWhOxlgP1WI3Cf/rupmOLno5E2mqSCzh6KMI52gCQ7UZ5ISzcfGYCKZ+SsiQ2xIaAOtYiC4iyMvG+sfl37hwowyEcwQm4cA7XcAN8IDAE7zAG7xbz9ar9TGjVbLm2Pbhj6zPH49ilMI=</latexit> <latexit sha1_base64="R9TBDumeJuZVdCYBPgayQaC/qc=">AB9XicbZBNS8MwHMb/nW9zTq2eBC/BIXhxtF7UgyDs4sHDlNUN1lHSLN3C0rQkqTBKvfhVvHhQ8at489uYvRx084GEh+dJSP6/MOVMacf5tkorq2vrG+XNylZ1e2fX3qs+qCSThHok4YnshFhRzgT1NOcdlJcRxy2g5HjUnfqRSsUS09DilvRgPBIsYwdpEgX3gU42DxpV76kcSk7wV3Bdmuy0Cu+bUnanQsnHnpgZzNQP7y+8nJIup0IRjpbquk+pejqVmhNOi4meKpiM8IB2jRU4pqXTyco0LFJ+ihKpFlCo2n6+0aOY6XGcWhOxlgP1WI3Cf/rupmOLno5E2mqSCzh6KMI52gCQ7UZ5ISzcfGYCKZ+SsiQ2xIaAOtYiC4iyMvG+sfl37hwowyEcwQm4cA7XcAN8IDAE7zAG7xbz9ar9TGjVbLm2Pbhj6zPH49ilMI=</latexit> <latexit sha1_base64="+oMm6VNnWuShRDNcJU9+qmq+3bY=">ACAHicbVBNS8NAEN34WetX1IvgJVgEL5bEi3oQir148FCltYUmhM120i7dbMLuRighXvwrXjyoePVnePfuG1z0NYHMzem2F3XpAwKpVtfxsLi0vLK6ultfL6xubWtrmzey/jVBokZjFohNgCYxyaCmqGHQSATgKGLSDYX3stx9ASBrzphol4EW4z2lICVZa8s19FxT265fOiRsKTLKmf5frdpP7ZsWu2hNY8QpSAUVaPjml9uLSRoBV4RhKbuOnSgvw0JRwiAvu6mEBJMh7kNXU4jkF42uSC3jrTSs8JY6OLKmqi/NzIcSTmKAj0ZYTWQs95Y/M/rpio89zLKk1QBJ9OHwpRZKrbGcVg9KoAoNtIE0H1Xy0ywDoJpUMr6xCc2ZPnSeu0elG1b+1K7apIo4QO0CE6Rg46QzV0jRqohQh6RM/oFb0ZT8aL8W58TEcXjGJnD/2B8fkDA2yWKQ=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="AVkidoGiZKGjobmFXl/ZhZ6+wk=">AB/nicbVDLSsNAFJ3UV62vqODGTbAIdWFNRFAXQtGNiIsqxhbSECbT23bo5MHMRCixC3/FjQsVt36HO/GSZuFth64l8M59zJ3jh8zKqRpfmuFmdm5+YXiYmlpeWV1TV/fuBdRwgnYJGIRb/pYAKMh2JKBs2YAw58Bg2/f5H5jQfgkbhnRzE4Aa4G9IOJVgqydO36mdOpRUk3u1+1q/3DsC98sDTy2bVHMGYJlZOyihH3dO/Wu2IJAGEkjAshGOZsXRTzCUlDIalViIgxqSPu+AoGuIAhJuO7h8au0pG52IqwqlMVJ/b6Q4EGIQ+GoywLInJr1M/M9zEtk5cVMaxomEkIwf6iTMkJGRhWG0KQci2UARTDhVtxqkhzkmUkVWUiFYk1+eJvZh9bRq3hyVa+d5GkW0jXZQBVnoGNXQJaojGxH0iJ7RK3rTnrQX7V37GI8WtHxnE/2B9vkDXKUlw=</latexit> <latexit sha1_base64="AVkidoGiZKGjobmFXl/ZhZ6+wk=">AB/nicbVDLSsNAFJ3UV62vqODGTbAIdWFNRFAXQtGNiIsqxhbSECbT23bo5MHMRCixC3/FjQsVt36HO/GSZuFth64l8M59zJ3jh8zKqRpfmuFmdm5+YXiYmlpeWV1TV/fuBdRwgnYJGIRb/pYAKMh2JKBs2YAw58Bg2/f5H5jQfgkbhnRzE4Aa4G9IOJVgqydO36mdOpRUk3u1+1q/3DsC98sDTy2bVHMGYJlZOyihH3dO/Wu2IJAGEkjAshGOZsXRTzCUlDIalViIgxqSPu+AoGuIAhJuO7h8au0pG52IqwqlMVJ/b6Q4EGIQ+GoywLInJr1M/M9zEtk5cVMaxomEkIwf6iTMkJGRhWG0KQci2UARTDhVtxqkhzkmUkVWUiFYk1+eJvZh9bRq3hyVa+d5GkW0jXZQBVnoGNXQJaojGxH0iJ7RK3rTnrQX7V37GI8WtHxnE/2B9vkDXKUlw=</latexit> <latexit sha1_base64="AVkidoGiZKGjobmFXl/ZhZ6+wk=">AB/nicbVDLSsNAFJ3UV62vqODGTbAIdWFNRFAXQtGNiIsqxhbSECbT23bo5MHMRCixC3/FjQsVt36HO/GSZuFth64l8M59zJ3jh8zKqRpfmuFmdm5+YXiYmlpeWV1TV/fuBdRwgnYJGIRb/pYAKMh2JKBs2YAw58Bg2/f5H5jQfgkbhnRzE4Aa4G9IOJVgqydO36mdOpRUk3u1+1q/3DsC98sDTy2bVHMGYJlZOyihH3dO/Wu2IJAGEkjAshGOZsXRTzCUlDIalViIgxqSPu+AoGuIAhJuO7h8au0pG52IqwqlMVJ/b6Q4EGIQ+GoywLInJr1M/M9zEtk5cVMaxomEkIwf6iTMkJGRhWG0KQci2UARTDhVtxqkhzkmUkVWUiFYk1+eJvZh9bRq3hyVa+d5GkW0jXZQBVnoGNXQJaojGxH0iJ7RK3rTnrQX7V37GI8WtHxnE/2B9vkDXKUlw=</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOygmML7VAymTtaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0gMRa5y04+5RSU1hiRJYb8wyLNYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS6iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBXTgCm7hHroQgoAEXuDNm3iv3vuqpq37uwEfsn7+Aap5IoM</latexit> <latexit sha1_base64="1MiH6zav+sah2+m9pJXGXl8SvHs=">AB9HicbZBPS8MwGMbfzn9zTq1ePHgpDmHCGK0XFUQELx52mGNzg7WUNEu3sKQtSqMsotfxYsHFT+LN7+N6baDbj6Q8ON5EpL3CRJGpbLtb6Owtr6xuVXcLu2Ud/f2zYPyo4xTgUkHxywWvQBJwmhEOoqRnqJIgHjHSD8V2ed5+IkDSO2mqSEI+jYURDipHSlm8eVdt+46bt2puzeWp37jO9aZb1bsuj2TtQrOAiqwUNM3v9xBjFNOIoUZkrLv2InyMiQUxYxMS24qSYLwGA1JX2OEOJFeNhtgap1qZ2CFsdArUtbM/X0jQ1zKCQ/0SY7USC5nuflf1k9VeOlNEpSRSI8fyhMmaViK2/DGlBsGITDQgLqv9q4RESCvdWUmX4CyPvAqd8/pV3X6woQjHcAJVcOACbuEemtABDFN4gTd4N56NV+Nj3lbBWNR2CH9kfP4ATGOTVQ=</latexit> <latexit sha1_base64="1MiH6zav+sah2+m9pJXGXl8SvHs=">AB9HicbZBPS8MwGMbfzn9zTq1ePHgpDmHCGK0XFUQELx52mGNzg7WUNEu3sKQtSqMsotfxYsHFT+LN7+N6baDbj6Q8ON5EpL3CRJGpbLtb6Owtr6xuVXcLu2Ud/f2zYPyo4xTgUkHxywWvQBJwmhEOoqRnqJIgHjHSD8V2ed5+IkDSO2mqSEI+jYURDipHSlm8eVdt+46bt2puzeWp37jO9aZb1bsuj2TtQrOAiqwUNM3v9xBjFNOIoUZkrLv2InyMiQUxYxMS24qSYLwGA1JX2OEOJFeNhtgap1qZ2CFsdArUtbM/X0jQ1zKCQ/0SY7USC5nuflf1k9VeOlNEpSRSI8fyhMmaViK2/DGlBsGITDQgLqv9q4RESCvdWUmX4CyPvAqd8/pV3X6woQjHcAJVcOACbuEemtABDFN4gTd4N56NV+Nj3lbBWNR2CH9kfP4ATGOTVQ=</latexit> <latexit sha1_base64="zDW2uEPn9Prthn+nPZd4cAl3CQ=">AB/3icbVDLSsNAFJ3UV62vqAsXbgaLUKGUxI0KIkU3LrqopbGFJoTJdNIOnUnCzEQopRt/xY0LFbf+hjv/xkmbhVYP3MvhnHuZuSdIGJXKsr6MwtLyupacb20sbm1vWPu7t3LOBWYODhmsegGSBJGI+IoqhjpJoIgHjDSCUY3md95IELSOGqrcUI8jgYRDSlGSku+eVBp+42rt+qulWXp37jMutE98sWzVrBviX2DkpgxN3/x0+zFOYkUZkjKnm0lypsgoShmZFpyU0kShEdoQHqaRogT6U1mB0zhsVb6MIyFrkjBmfpzY4K4lGMe6EmO1FAuepn4n9dLVXjuTWiUpIpEeP5QmDKoYpilAftUEKzYWBOEBdV/hXiIBMJKZ1bSIdiLJ/8lzmntombdWeX6dZ5GERyCI1ABNjgDdXALmsABGEzBE3gBr8aj8Wy8Ge/z0YKR7+yDXzA+vgGw0pS7</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> Two-terminal (thermoelectric) power production Right ( R ) Left ( L ) reservoir reservoir S T , T , L L R R P = [( µ R − µ L ) /e ] J e ( T L > T R , µ L < µ R ) The upper bound to efficiency is given by the Carnot efficiency (expected only at zero power; intuitively, finite currents entail dissipation): η C = 1 − T R T L

  8. Scattering theory for two reservoirs Conserved currents: Heat currents: First law of thermodynamics:

  9. Second law for scattering theory For two terminals: monotonically decaying function implies For arbitrary number of terminals proof by Nenciu (2007): The second law implies that when the reservoirs are at the same temperature the system cannot generate electrical power Joule heating:

  10. Scattering theory & Nernst’s unattainability principle Dynamical formulation of the third law of thermodynamics: it is impossible to reach absolute zero temperature in finite time Extracting heat from reservoir i with rate J i , we change its temperature: Heat capacity of a free-electron reservoir: Nernst principle satisfied (in a weak form)

  11. How to obtain the best steady-state heat to work conversion?

  12. Heat-to-work conversion through energy filtering Flow of heat from hot to cold but no flow of charge [see G. B., G. Casati, K. Saito, R. S. Whitney, Phys. Rep. 694 , 1 (2017)]

  13. Energy filters in a thermocouple geometry

  14. What about phonons? Necessary both: (i) to reduce phonon transport; (ii) to have an efficient working fluid (optimize the electron dynamics)

  15. Reducing thermal conductance [Blanc, Rajabpour, Volz, Fournier, Bourgeois, APL 103 , 043109 (2013)]

  16. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Thermoelectric efficiency (power production) in the Landauer approach Charge current Heat current from reservoirs: � ∞ J q. α = 1 J h, α dE ( E − µ α ) τ ( E )[ f L ( E ) − f R ( E )] h −∞ Efficiency:

  17. Delta-energy filtering and Carnot efficiency If transmission is possible only inside a tiny energy window around E=E ✶ then Carnot efficiency Carnot efficiency obtained in the limit of reversible transport (zero entropy production) and zero output power [Mahan and Sofo, PNAS 93, 7436 (1996); Humphrey et al., PRL 89, 116801 (2002)]

  18. Example: single-level quantum dot Dot’s scattering matrix: The Green’s function is for a non-Hermitian effective Hamiltonian taking into account coupling to the dots operator coupling the single-level dot to reservoirs:

  19. Bekenstein-Pendry bound There is an purely quantum upper bound on the heat current through a single transverse mode [Bekenstein, PRL 46 , 923 (1981); Pendry, JPA 16 , 2161 (1983) ] For a reservoir coupled to another reservoir at T=0 through a -mode constriction which lets particle flow at all energies:

  20. Maximum power of a heat engine Since the heat flow must be less than the Bekenstein- Pendry bound and the efficiency smaller than Carnot efficiency also the output power must be bounded Within scattering theory: [Whitney, PRL 112 , 130601 (2014); PRB 91 , 115425 (2015)]

  21. Efficiency optimization (at a given power) Find the transmission function that optimizes the heat-engine efficiency for a given output power [Whitney, PRL 112 , 130601 (2014); PRB 91 , 115425 (2015)]

  22. Trade-off between power and efficiency Carnot efficiency f o r b i d d e 1 n Efficiency Maximum 2 possible power, P max gen increase voltage power generated, P gen Result from (nonlinear) scattering theory [Whitney, PRL 112 , 130601 (2014); PRB 91 , 115425 (2015)]

  23. Power-efficiency trade-off including phonons no phonons Efficiency weak phonons strong phonons 0 Power output, P [see Whitney, PRB 91 , 115425 (2015)]

  24. Boxcar transmission in topological insulators Graphene nanoribbons with heavy adatoms and nanopores [Chang et al., Nanolett., 14, 3779 (2014)]

  25. Linear response and Landauer formalism The Onsager coefficients are obtained from the linear response expansion of the charge and thermal currents L ee = e 2 TI 0 , L eh = L he = eTI 1 , L hh = TI 2

  26. Wiedemann-Franz law Phenomenological law: the ratio of the thermal to the electrical conductivity is directly proportional to the temperature, with a universal proportionality factor. Lorenz number

  27. Sommerfeld expansion The Wiedemann-Franz law can be derived for low- temperature non-interacting systems both within kinetic theory or Landauer approach In both cases it is substantiated by Sommerfeld expansion. Within Landauer approach we consider � ∞ J q. α = 1 dE ( E − µ α ) τ ( E )[ f L ( E ) − f R ( E )] h −∞ We assume smooth transmission functions τ (E) in the neighborhood of E=µ:

  28. To leading order in k B T/E F with G = e 2 I 0 ≈ e 2 I 2 − I 2 ≈ π 2 k 2 K = 1 � � B T 1 h τ ( µ ) , τ ( µ ) 3 h T I 0 Neglected I 12 /I 0 with respect to I 2 , which in turn implies L ee L hh >>(L eh ) 2 and Wiedemann-Franz law: � 2 G ≈ π 2 � k B K T e 3

  29. Wiedemann-Franz law and thermoelectric efficiency ZT = GS 2 T = S 2 K L Wiedemann-Franz law derived under the condition L ee L hh >>(L eh ) 2 and therefore Wiedemann-Franz law violated in - low-dimensional interacting systems that exhibit non- Fermi liquid behavior - (smll) systems where transmission can show significant energy dependence

  30. (Violation of) Wiedemann-Franz law in small systems Consider a (basic) model of a molecular wire coupled to electrodes: Transmission: Green’s function: Level broadening functions: Self-energies:

  31. Wide band limit: level widths energy independent: Take Transmission: Green’s function obtained by inverting

  32. Mott’s formula for thermopower For non-interacting electrons (thermopower vanishes when there is particle-hole symmetry) � � � ∞ − ∂ f −∞ dE ( E − µ ) τ ( E ) S = 1 = 1 I 1 ∂ E � � � ∞ eT I 0 eT − ∂ f −∞ dE τ ( E ) ∂ E Consider smooth transmissions Electron and holes contribute with opposite signs: we want sharp, asymmetric transmission functions to have large S (ex: resonances, Anderson QPT, see Imry and Amir, 2010), violation of WF, possibly large ZT.

  33. Metal-insulator 3D Anderson transition x conductivity critical exponent [G.B., H. Ouerdane, C. Goupil, Comptes Rendus Physique 17 , 1072 (2016)]

  34. Energy filtering For good thermoelectric we desire violation of WF law such that: No dispersion with delta-energy filtering: ZT diverges

  35. III. Rate equations

  36. Conditions for a rate equation Consider systems weakly coupled to the environment. Non-Markovian effects are neglected as well as the generation of coherences (in the system’s energy eigenbasis). Interaction effects may be included.

  37. Rate equations Transition rate from state a to state b (due to the coupling to reservoir i): The probability to find the system in state |b ⟩ at time t obeys a rate equation:

  38. Local detailed balance The rates can be derived from microscopic Hamiltonian via Fermi golden rule, or be considered phenomenological constants. They obey the local detailed balance principle: change of entropy in reservoir i when it induces a system’s transition from a to b. Clausius relation:

  39. ⇒ (Steady-state) currents Probability current at time t for the transition from a to b induced by reservoir i: Steady-state solution of the rate equations: Steady-state probability currents: Kirkhoff’s law:

  40. Particle and energy currents By taking the steady-state probability currents, we obtain the steady-state charge and heat currents: There is no net flow of particle and energy into the system at equilibrium:

  41. Equilibrium (dynamical definition) Connect the system to reservoirs at the same temperature and electrochemical potential A state at equilibrium must obey the detailed balance: From the local detailed balance: We then derive the equilibrium state

  42. Output power and the first law of thermodynamics The power generated at reservoir i depends on the reference electrochemical potential, but the overall power is gauge-invariant: This is a consequence of Kirkoff’s law and of the relation: We obtain the first law of thermodynamics: the rate of heat absorption equals the rate of work production:

  43. Second law of thermodynamics Change of entropy in reservoir i: System in general not in a thermal state: use Shannon entropy rather than Clausius definition: Total entropy production rate: Use local detailed balance to prove that

  44. Example: single-level quantum dot Neglect electron spin; charging energy too high to have doble occupancy Rate equations for the dot’s dynamics:

  45. Particle and energy currents Particle currents: Set Heat currents: Entropy production at steady state:

  46. Power and efficiency Generated power: Efficiency of a heat engine: Coefficient of performance for a refrigerator:

  47. ⇒ ⇒ Steady-state solution Use Using local detailed balance:

  48. ⇒ <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Carnot efficiency Reversible engine if the entropy production rate vanishes: This leads to Carnot efficiency: The price to pay is that the power is zero: E 0 − E 1 − ( N 0 − N 1 ) µ L = − ✏ 1 T L T L = E 0 − E 1 − ( N 0 − N 1 ) µ R = −− ✏ 1 + µ = − ✏ 1 + ✏ 1 (1 − T R /T L ) = − ✏ 1 T R T R T R T L

  49. Multilevel interacting quantum dot Discrete energy levels: ideal to implement energy filtering Study the effects of Coulomb interaction between electrons [Erdmann, Mazza, Bosisio, G.B., Fazio, Taddei PRB 95 , 245432 (2017)]

  50. Sequential (single-electron) tunnelling regime single-electron levels of the QC capacitance number of electrons in the dot electrostatic (Coulomb) interaction tunneling rate from level p to reservoir 𝛽 Weak coupling to the reservoirs: thermal energy , level spacing and charging energy much larger than the coupling energy between the QD and the reservoirs: charge quantized Electrostatic energy single-electron charging energy

  51. Energy conservation Configuration determined by occupation numbers Non-equilibrium probability Energy conservation for tunnelling into or from reservoirs:

  52. Kinetic (rate) equations One kinetic (rate) equation for each configuration: Stationary solution:

  53. Steady-state currents Charge current: Energy current: Heat current:

  54. Quantum limit Energy spacing and charging energy much bigger than Analytical results for equidistant levels: power factor (energy filtering)

  55. Coulomb interaction may enhance the thermoelectric performance of a QD Compare interacting and non-interacting two-terminal QD with the same energy spacing T h e r m a l c o n d u c t a n c e suppressed by Coulomb interaction: ZT is greatly increased. For a single level K=0 (charge and heat current proportional). For at least two levels Coulomb blockade prevents a second electron to enter when one is already there (electrostatic energy to be paid).

  56. IV. Thermodynamic bounds on heat-to-work conversion

  57. Can interactions improve the power-efficiency trade-off? What is the role of a magnetic field? Is it possible to have Carnot at finite power? What is the role played by fluctuations? Thermodynamic uncertainty relations

  58. Short intermezzo: a reason why interactions might be interesting for thermoelectricity thermal conductance at zero voltage If the ratio K’/K diverges, then the Carnot efficiency is achieved

  59. Thermodynamic properties of the working fluid coupled equations:

  60. Setting dN=0 in the coupled equations:

  61. Thermodynamic cycle maximum efficiency (over d 𝜈 at fixed dT): thermodynamic figure of merit:

  62. Analogy with a classical gas heat capacity at constant p or V

  63. Power-efficiency trade-off: Is it possible to overcome the non-interacting bound? Noninteracting systems: for P/P max <<1, [Whitney, PRL 112 , 130601 (2014); PRB 91 , 115425 (2015)] Bound not favorable for power-efficiency trade-off; due to the fact that delta-energy filtering is the only mechanism to achieve Carnot for noninteracting systems For interacting systems it is possible to achieve Carnot without delta-energy filtering

  64. Interacting systems, Green-Kubo formula The Green-Kubo formula expresses linear response transport coefficients in terms of dynamic correlation functions of the corresponding current operators, cal- culated at thermodynamic equilibrium Non-zero generalized Drude weights signature of ballistic transport

  65. Conservation laws and thermoelectric efficiency Suzuki’s formula (which generalizes Mazur’s inequality) for finite-size Drude weights Q m relevant (i.e., non-orthogonal to charge and thermal currents), mutually orthogonal conserved quantities Assuming commutativity of the two limits,

  66. Momentum-conserving systems Consider systems with a single relevant constant of motion, notably momentum conservation Ballistic contribution to vanishes since D ee D hh − D 2 eh = 0 ZT = σ S 2 T ∝ Λ 1 − α → ∞ when Λ → ∞ κ ( α < 1) (G.B., G. Casati, J. Wang, PRL 110, 070604 (2013))

  67. For systems with more than a single relevant constant of motion, for instance for integrable systems, due to the Schwarz inequality eh = || x e || 2 || x h || 2 � � x e , x h � � 0 D ee D hh � D 2 � � x i = ( x i 1 , ..., x iM ) = 1 � J i Q 1 � , ..., � J i Q M � � � 2 Λ � Q 2 � Q 2 1 � M � M � � x e , x h � = x ek x hk k =1 Equality arises only in the exceptional case when the two vectors are parallel; in general det L ∝ L 2 , κ ∝ Λ , ZT ∝ Λ 0 ∝ Λ 2

Recommend


More recommend