quantum thermodynamics 1
play

Quantum thermodynamics: 1 Mauro Paternostro Queens University - PowerPoint PPT Presentation

Quantum thermodynamics: 1 Mauro Paternostro Queens University Belfast Advanced School on Quantum Science and Quantum T echnologies (ICTP , T rieste, 4 September 2017) Non-equilibrium thermodynamics of quantum processes: 1 or an


  1. Quantum thermodynamics: 1 Mauro Paternostro Queen’s University Belfast Advanced School on Quantum Science and Quantum T echnologies (ICTP , T rieste, 4 September 2017)

  2. Non-equilibrium thermodynamics of quantum processes: 1 or an invitation to study stochastic thermodynamics of quantum processes Mauro Paternostro Queen’s University Belfast Advanced School on Quantum Science and Quantum T echnologies (ICTP , T rieste, 4 September 2017)

  3. Belfast

  4. Queen’s University Belfast Joseph Larmor John Stuart Bell Harrie Massey David Bates, FRS

  5. On the shoulders of Belfast’s giants 4 November: John Bell day

  6. On the shoulders of Belfast’s giants Lord Kelvin Born in Belfast in 1824 Belfast, Botanic Gardens

  7. Thermodynamics…

  8. …and (one of) its evolution(s) Framework for non-equilibrium quantum processes Hot Heat Re-definition of work, heat, entropy… Q Work in non-equilibrium quantum contexts Heat Cold Thermodynamics-inspired arena for the study/use of quantum resources

  9. My take of it Fundamental viewpoint T echnological viewpoint Using quantumness Thermodynamics is a theory to optimise machine of inherently complex systems performance

  10. Content & structure n Non-equilibrium definition of thermodynamic work: fluctuation theorems Landauer principle & quantum (open-system)dynamics Irreversibility & entropy production in closed q-systems Quantum correlations, coherences and thermodynamics

  11. Work and quantum T alkner, Lutz, and Haenggi, Phys. Rev. E 75, 050102 (2007)

  12. Setting the context In quantum contexts: work is not an observable n m p 0 p 0 n p τ m | n δ n [ i H f ] all instan n,m and ˆ ˆ H f ith H i simplifie characte X p 0 Work Distribution m | n δ ( W − ( E 0 P F ( W ) = m − E n )) n p τ n,m P . T alkner, E. Lutz, and P . Haenggi, Phys. Rev. E 75, 050102 (2007)

  13. Fluctuation theorems Work Distribution Characteristic function of Work Distribution Z dWe ıuW P F ( W ) X p 0 χ F ( u ) = m | n δ ( W − ( E 0 P F ( W ) = n p τ m − E n )) n,m h i U † ( τ , 0) e ıuH ( λ τ ) U ( τ , 0) e − ıuH ( λ 0 ) ρ G ( λ 0 ) χ F ( u ) = = Tr ρ G ( λ 0 ) = e − β H ( λ 0 ) Z ( λ 0 )

  14. Fluctuation theorems Work Distribution Characteristic function of Work Distribution Z dWe ıuW P F ( W ) X p 0 χ F ( u ) = m | n δ ( W − ( E 0 P F ( W ) = n p τ m − E n )) n,m h e − β W i = e − β ∆ F Jarzynski sky equality Jarzynski, PRL 78 2690 (1997) free-energy change T asaki-Crooks G. E. Crooks, PRE 60, 2721 (1999) relation H. T asaki, cond-mat/0009244 (2000)

  15. Classical fluctuation relations J. Liphardt, S. Dumont, S. B. Smith, I. Jr Tinoco, and C. Bustamante, Science, 296, 1832 (2002) D. Collin, F . Ritort, C. Jarzynski, S. B. Smith, I. Tinoco Jr, and C. Bustamante, Nature 437, 231 (2005)

  16. First proposal (as far as I know) Ingenious filtering scheme for energy measurements

  17. Other proposals and implementations SET a b ne ne C L C L C j C j C R C R ~ d V g V g c

  18. What’s wrong with it “The major obstacle for the experimental verification of the work fluctuation relation is posed by the necessity of performing quantum projective measurements of energy”

  19. Measuring work A h h S H f u ˆ U τ e − i ˆ H i u ⊗ | 0 ⟩⟨ 0 | A + e − i ˆ G ( u , τ ) = ˆ ˆ U τ ⊗ | 1 ⟩⟨ 1 | A R. Dorner, et al., Phys. Rev.Lett. 110, 230601 (2013) L. Mazzola, G. De Chiara, and MP , Phys. Rev. Lett. 110, 230602 (2013) L. Mazzola, G. De Chiara, and MP , Int. J. Quant. Inf. (2014)

  20. The experiment week ending P H Y S I C A L R E V I E W L E T T E R S PRL 113, 140601 (2014) 3 OCTOBER 2014 Experimental Reconstruction of Work Distribution and Study of Fluctuation Relations in a Closed Quantum System Tiago B. Batalhão, 1 Alexandre M. Souza, 2 Laura Mazzola, 3 Ruben Auccaise, 2 Roberto S. Sarthour, 2 Ivan S. Oliveira, 2 John Goold, 4 Gabriele De Chiara, 3 Mauro Paternostro, 3,5 and Roberto M. Serra 1 1 Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, R. Santa Adélia 166, 09210-170 Santo André, x sin π t y cos π t ✓ ◆ ˆ H F ( t ) = 2 π ~ ν ( t ) σ C σ C ˆ 2 τ + ˆ , 2 τ

  21. The experiment G 1 ⌘ | 0 i h 0 | H ⌦ e � iu ˆ C H α (0) + | 1 i h 1 | H ⌦ ˆ ˆ 1 1 C + | 1 i h 1 | H ⌦ e � iu ˆ H α ( τ ) . G 2 ⌘ | 0 i h 0 | H ⌦ ˆ ˆ 1 1 produce rotations by the displayed interaction ˆ σ H σ C H J = 2 π J ˆ z ˆ z time) are represented e � β ˆ H α (0) / Z 0 to ρ 0 HC = | 0 i h 0 | H ⌦ equilibrium state of T . B. Batalhao, et al. Phys. Rev. Lett. 113, 140601 (2014)

  22. The experiment Backward process T . B. Batalhao, et al. Phys. Rev. Lett. 113, 140601 (2014)

  23. The experiment T asaki-Crooks relation T . B. Batalhao, et al. Phys. Rev. Lett. 113, 140601 (2014)

  24. The experiment Jarzynski equality T . B. Batalhao, et al. Phys. Rev. Lett. 113, 140601 (2014)

  25. Other experimental studies Experimental test of the quantum Jarzynski equality with a trapped-ion system Shuoming An 1 , Jing-Ning Zhang 1 , Mark Um 1 , Dingshun Lv 1 , Yao Lu 1 , Junhua Zhang 1 , Zhang-Qi Yin 1 , H. T. Quan 2,3 * and Kihwan Kim 1 * Raman2 a c b Adiabatic process ω ω ν ω ω ν 171 Yb + L + X − and L − X + F = 1 2 P 1/2 F = 0 V RF Detection ∆ GND d V d.c. V d.c. Instantaneous process σ σ − + Raman2 ω GND ∆ k L V RF X ⏐↑〉 F = 1 2 S 1/2 ω B ω Raman1 Y HF Raman1 X F = 0 ⏐↓〉 Z ω ω L + HF S. An, et al., Nature Phys. 11, 193 (2015)

  26. Other experimental studies Experimental study of quantum thermodynamics using optical vortices ujo, 1 T. H¨ affner, 1 R. Bernardi, 1 D. S. Tasca, 2 M. P. J. R. Medeiros de Ara´ Lavery, 3 M. J. Padgett, 4 A. Kanaan, 1 L. C. C´ eleri, 5, ∗ and P. H. Souto Ribeiro 1, † 1 Departamento de F´ ısica, Universidade Federal de Santa Catarina, Florian´ opolis, SC, Brazil R. Medeiros de Araujo, et al. arXiv: 1705.02990

  27. Other experimental studies Using a quantum work meter to test non-equilibrium fluctuation theorems Federico Cerisola, 1, 2 Yair Margalit, 3 Shimon Machluf, 4 Augusto J. Roncaglia, 1, 2 Juan Pablo Paz, 1, 2 and Ron Folman 3 1 (a) Free Free Entangling Entangling Imaging Fall Fall Operation Operation (Motion) Driving (Electronic state) Atom chip (b) (c) Initial state preparation Probability - RF - Entangling - ∂B / ∂z - g Driving - RF - Entangling - ∂B / ∂z - Imaging z F . Cerisola et al., arXiv:1706.07866

  28. The Belfast crew

Recommend


More recommend