pwa with full rank density matrix of the and 0 0 systems
play

PWA with full rank density matrix of the + and 0 0 systems - PowerPoint PPT Presentation

Preface PWA method Fit results Conclusions Backup slides PWA with full rank density matrix of the + and 0 0 systems at VES setup Igor Kachaev, Dmitry Ryabchikov for VES group, Protvino, Russia Institute for High


  1. Preface PWA method Fit results Conclusions Backup slides PWA with full rank density matrix of the π + π − π − and π − π 0 π 0 systems at VES setup Igor Kachaev, Dmitry Ryabchikov for VES group, Protvino, Russia Institute for High Energy Physics, Protvino. E-mail Igor.Katchaev@ihep.ru MESON 2016 Krakow, Poland 3 June 2016

  2. Preface PWA method Fit results Conclusions Backup slides Preface Comparison of two final states permit us to know better: • isospin relation between these states • what is resonant and what is not • bugs in hardware, methods, programs... • PWA is model dependent. It is useful to compare one model for two systems and two model (full rank and rank 1) for the same system. We have: • full featured magnetic spectrometer with 29 GeV/c π − beam, Be target, | t ′ | = 0 . . . 1 GeV 2 /c 2 • 20 · 10 6 events in π − π 0 π 0 (leading statistics in the world) • 30 · 10 6 events in π + π − π − (next to leading) • Analysis is done for | t ′ | = 0–0.03–0.15–0.30–0.80 GeV 2 /c 2

  3. Preface PWA method Fit results Conclusions Backup slides Raw data π Mass(3 ) T prime Acceptance 0.4 2000 90000 π K->3 6 10 1500 0.35 80000 1000 0.3 70000 500 5 10 60000 0.25 0 0.4 0.45 0.5 0.55 0.6 50000 0.2 4 40000 10 0.15 30000 0.1 20000 3 10 For |t'| < 0.03 0.05 10000 0 0 0 0.5 1 1.5 2 2.5 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 π GeV/c 2 2 M(3 ) GeV/c GeV /c Here and below: Blue line - π + π − π − Red line - π − π 0 π 0

  4. Preface PWA method Fit results Conclusions Backup slides PWA method. Partial waves π + π - π - R( ππ ) X π - p p PWA amplitudes are constructed using isobar model, sequential decay via ππ subsystem. Wave has quantum numbers J P LM η R where J P is spin-parity for 3 π system, M η is its projection of spin and naturality, R is the known resonance in ππ system, L is orbital momentum in R π decay. I G = 1 − is implicit for 3 π charged states.

  5. Preface PWA method Fit results Conclusions Backup slides Method details • Amplitudes use d-functions (Hansen, Illinois PWA) • Amplitudes are relativistic (Chung, Filippini) • resonanses are relativistic Breit-Wigners R = f 0 ( 980 ) , ε ( 1300 ) , f 0 ( 1500 ) , ρ ( 770 ) , f 2 ( 1270 ) , ρ 3 ( 1690 ) To describe ππ S -wave we use modified Au, Morgan, Pennnington M-solution with f 0 ( 980 ) withdrawn. We name it ε ( 1300 ) • Notation for some known 3 π resonances: a 1 ( 1260 ) — 1 + S 0 + ρ ( 770 ) , a 2 ( 1320 ) — 2 + D 1 + ρ ( 770 ) , π 2 ( 1670 ) — 2 − S 0 + f 2 ( 1270 ) , π ( 1800 ) — 0 − S 0 + f 0 ( 980 ) • fit parameters are elements of positive definite density matrix. No rank constraints. For small number of waves (where C � = 1, see below) we have 100% coherence.

  6. Preface PWA method Fit results Conclusions Backup slides Extended likelihood function N ev N w � � C k ( i ) R m ( i ) m ( j ) C ∗ k ( j ) M i ( τ e ) M ∗ ln L = ln j ( τ e ) e = 1 i , j = 1 N w � � C k ( i ) R m ( i ) m ( j ) C ∗ ε ( τ ) M i ( τ ) M ∗ − N ev j ( τ ) dτ k ( j ) i , j = 1 • N ev — number of events, N w — number of waves • M ( τ e ) — amplitudes for e -th event (data) • R — positive definite density matrix (parameters) • C — coupling coeff (most of C = 1, some are parameters) • m ( i ) , k ( i ) — describes wave to C and R correspondence • τ = s , t , m ( 3 π ) , . . . — phase space variables • ε ( τ ) — acceptance of the setup

  7. Preface PWA method Fit results Conclusions Backup slides Coherent part of density matrix Coherent part of the density matrix R is the largest part of the matrix which has rank 1 and behaves like vector of amplitudes. Let � e k is k- th eigenvalue d � e k ∗ V k ∗ V + R = where k V k is k- th eigenvector k = 1 Let e 1 ≫ e 2 > . . . > e d > 0. Leading term R L is coherent part of density matrix and R S is the rest (incoherent part). This decomposition is stable w.r.t. variations of R matrix elements. d R L = e 1 ∗ V 1 ∗ V + � e k ∗ V k ∗ V + R = R L + R S , 1 , R S = k k = 2 Experience shows that resonances tend to concentrate in R L .

  8. Preface PWA method Fit results Conclusions Backup slides Isospin relations If we neglect phase space factors � 1 R = σ ( π − π 0 π 0 ) for waves with ρ ( 770 ) , ρ 3 ( 1690 ) σ ( π + π − π − ) = 1 / 2 for waves with f 0 ( ... ) , f 2 ( 1270 ) All waves coupled to π 0 π 0 have factor 1 / 2 To simplify comparison, they are scaled 2x. To compensate for some losses, all π − π 0 π 0 are scaled by 1.25 This factor is obtained comparing signals of a 2 ( 1320 ) Blue line - π + π − π − Red line - π − π 0 π 0

  9. Preface PWA method Fit results Conclusions Backup slides Largest waves, | t ′ | < 0.03 GeV 2 /c 2 1+S0+ RHO(770) 1+S0+ RHO(770) 0-S0+ EPSMX 0-S0+ EPSMX 2-S0+ F2(1270) 2-S0+ F2(1270) 0-P0+ RHO(770) 0-P0+ RHO(770) × 3 × 3 × 3 × 3 10 10 10 10 Entries 100 Entries 9095186 Entries 3827642 Entries 4348903 180 1800 300 200 160 1600 π 180 (1300) π (1670) 250 2 140 1400 160 π π (1800) (2100) a (1260) 2 120 140 1200 1 200 120 100 1000 150 100 800 80 80 60 600 100 60 400 40 40 50 20 200 20 0 0 0 0 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 π π π π M(3 ) M(3 ) M(3 ) M(3 ) 1+P0+ EPSMX 1+P0+ EPSMX 0-S0+ F0(975) 0-S0+ F0(975) 2-P0+ RHO(770) 2-P0+ RHO(770) 2-F0+ RHO(770) 2-F0+ RHO(770) × 3 × 3 10 10 700 Entries 8020903 Entries 1708639 Entries 2576145 Entries 1555797 60000 70000 100 600 50000 60000 π 80 (1800) 500 50000 40000 400 60 40000 30000 300 30000 40 20000 200 20000 20 10000 100 10000 0 0 0 0 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 M(3 π ) M(3 π ) M(3 π ) M(3 π )

  10. Preface PWA method Fit results Conclusions Backup slides Minor waves — 1, | t ′ | < 0.03 GeV 2 /c 2 2+D1+ RHO(770) 2+D1+ RHO(770) 2+D1+ RHO(770) 2+D1+ RHO(770) 2-D0+ EPSMX 2-D0+ EPSMX 2-D0+ F0(975) 2-D0+ F0(975) × 3 10 Entries 347211 Entries 1019707 70000 Entries 2261640 Entries 327941 120 16000 30000 π 60000 14000 (1670) ? 100 25000 2 |t'| < 0.03 |t'| = 0.03..0.15 12000 50000 a (1320) 80 a (1320) 20000 2 2 10000 40000 a (1700) ? 2 60 15000 8000 30000 6000 40 10000 20000 4000 5000 20 10000 2000 0 0 0 0 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 π π π π M(3 ) M(3 ) M(3 ) M(3 ) 2-D0+ F2(1270) 2-D0+ F2(1270) 3+D0+ RHO(770) 3+D0+ RHO(770) 3+P0+ F2(1270) 3+P0+ F2(1270) 3+S0+ RHO3 3+S0+ RHO3 20000 Entries 444637 Entries 614174 Entries 453530 Entries 191753 25000 20000 20000 18000 π (1670) 18000 18000 2 16000 20000 16000 16000 a (1875) ? 3 14000 14000 14000 12000 15000 12000 12000 10000 10000 10000 8000 10000 8000 8000 6000 6000 6000 5000 4000 4000 4000 2000 2000 2000 0 0 0 0 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 π π π π M(3 ) M(3 ) M(3 ) M(3 )

  11. Preface PWA method Fit results Conclusions Backup slides Minor waves — 2 1+P0+ F0(975) 1+P0+ F0(975) 1+P0+ F0(975) 1+P0+ F0(975) 0-S0+ F0(1500) 0-S0+ F0(1500) 4+G1+ RHO(770) 4+G1+ RHO(770) 24000 10000 9000 Entries 249681 Entries 132167 Entries 137809 Entries 117050 4500 22000 9000 |t'| < 0.03 |t'| = 0.03..0.15 8000 |t'| < 0.03 |t'| = 0.03..0.15 4000 20000 8000 7000 π a (1420) ? a (1420) ? (1800) ? a (2050) 18000 3500 1 1 4 7000 16000 6000 3000 6000 14000 5000 2500 12000 5000 4000 10000 2000 4000 8000 3000 1500 3000 6000 2000 2000 1000 4000 1000 1000 500 2000 0 0 0 0 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 π π π π M(3 ) M(3 ) M(3 ) M(3 ) 4+G1+ RHO(770) 4+G1+ RHO(770) 4+F1+ F2(1270) 4+F1+ F2(1270) 1-P0- RHO(770) 1-P0- RHO(770) 1-P1- RHO(770) 1-P1- RHO(770) 12000 Entries 75374 Entries 64438 Entries 75782 Entries 204921 3500 6000 |t'| = 0.15..0.30 |t'| = 0.03..0.15 2500 10000 3000 5000 a (2050) a (2050) |t'| = 0.03..0.15 |t'| = 0.03..0.15 4 4 2500 2000 8000 4000 2000 1500 6000 3000 1500 1000 4000 2000 1000 500 1000 2000 500 0 0 0 0 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 π π π π M(3 ) M(3 ) M(3 ) M(3 )

Recommend


More recommend