proton decay matrix elements on lattice
play

Proton decay matrix elements on lattice Jun-Sik Yoo 1 1 Department of - PowerPoint PPT Presentation

Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Proton decay matrix elements on lattice Jun-Sik Yoo 1 1 Department of Physics and Astronomy Stony Brook University 2019 Lattice Workshop for


  1. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Proton decay matrix elements on lattice Jun-Sik Yoo 1 1 Department of Physics and Astronomy Stony Brook University 2019 Lattice Workshop for US-Japan Intensity Frontier Incubation, BNL, March 25-27, 2019 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  2. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Introduction Figure 1: Proton decay image from (HYPER-K, ) → Π + ¯ p − ℓ 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  3. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Introduction Figure 2: Energy scale of search, Zoltan Ligeti 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  4. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Baryon asymmetry Nonzero net baryon number n B − ¯ n B ∼ 10 − 10 n γ Sakharov’s conditions ♣ At least one B violating process ♣ C- and CP-violation ♣ interactions outside of thermal equilibrium 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  5. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference GUT, SUSY-GUT GUT Symmetry group to be G ⊃ SU (3) C ⊗ SU (2) L ⊗ U (1) Y ♣ Gauge problem ♣ Charge quantization problem ♣ Coupling unification ♣ Baryon asymmetry SUSY-GUT ♣ Superpartners to particles ♣ Better unification at higher scale 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  6. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference GUT,SUSY-GUT (a) d=4 operator (b) d=5 operator (c) d=6 operator Figure 3: Possible BV operators in (SUSY-)GUT 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  7. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference GUT,SUSY-GUT (a) ∼ Λ GUT (b) ∼ Λ SUSY (c) ∼ Λ EW Figure 4: Proton decay operator at different scales Model parameters come into Wilson coefficients (a) Y qq , Y ql , Y ud , Y ue (b) M H C (c) m ˜ l , m ˜ q , triangle loop integrals, ... 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  8. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Effective operators Figure 5: Four-fermion effective operators Effective operator : O ΓΓ ′ = ( qq ) Γ ( q ℓ ) Γ ′ , ( XY ) Γ = ( X T C P Γ Y ) C := (Charge Conjugation Matrix) ℓ |O ΓΓ ′ | p � SM = C ΓΓ ¯ � Π¯ ℓ | p � GUT ∼ C ΓΓ � Π¯ v ℓ � Π | ( qq ) Γ P Γ ′ q | p � , where C ΓΓ ′ is a wilson coefficient, Π is a meson, and p is a proton. 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  9. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Decay rate The decay rate Γ is calculated from the hadronic matrix element, � Π( p ′ ) | O ΓΓ ′ ( q ) | N ( p , s ) � � ( q 2 ) − i / q � W ΓΓ ′ W ΓΓ ′ ( q 2 ) = ¯ u N ( p , s ) (1) v ℓ P Γ ′ 0 1 m N v ℓ P Γ ′ W ΓΓ ′ ( q 2 ) u N ( p , s ) + O ( m l / m N ) ¯ = ¯ v ℓ u N ( p , s ) 0 where Π a meson, N a nucleon, and W 0 , 1 decay form factor(AOKI et al., 2000). Then the decay rate is 2 � � = ( m 2 p − m 2 Π ) 2 � � p → Π + ¯ p → Π + ¯ � C I W I � � � � Γ ℓ ℓ . (2) � � 0 32 π m 3 � � p � � I 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  10. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Experimental bound Figure 6: Current proton decay bound in SK, (ABE et al., 2018) 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  11. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Lattice QCD Formulate a strongly interacting theory on a finite, discrete euclidean spacetime → Lattice QCD Numerically compute observables via importance sampling �O� = 1 � D [Φ] e − S E [Φ] O [Φ] Z = 1 � N k =1 O (Φ k ) N ◦ fully nonperturbative Figure 7: 3D lattice predictions from first principle ◦ fully gauge invariant 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  12. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Matrix elements 3pt-function (Meson)-(Decay Operator)-(Proton) Figure 8: 3pt function, Y.Aoki C 3 pt ( t , t ′ ) = � p ′ · � x ′ � 0 | J Π ( x ′ ) O ( x ) ¯ e − i � q · � x e i � J N ( x 0 ) | 0 � � x ,� x ′ = C 2 pt Π ( t ′ − t , � Tr[ PC 2 pt p ′ ) ( t , � p )] p p ′ ) |O| N ( � √ Z Π × � Π( � p ) � ¯ u N ( � p ) � Z p 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  13. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Matrix elements √ Z Π C 3 pt ( t , t ′ ) Define the ratio R 3 ( t , t ′ ) = � Z p . C 2 pt p ′ )Tr[ PC 2 pt Π ( t ′ − t ,� ( t ,� p )] p As t → ∞ , R 3 ( t , t ′ ) → � Π( p ′ ) | O ΓΓ ′ ( q ) | N ( p , s ) � , giving decay form factors W 0 , 1 ( q 2 ) 0 ( q 2 ) − iq 4 Tr[ R 3 P L P 4 ] = W Γ L W Γ L 1 ( q 2 ) . m N Tr[ R 3 P L iP 4 γ j ] = q j W Γ L 1 ( q 2 ) m N Momentum transfer is chosen to be q 2 ∼ 0 : � q + � p = � p ′ 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  14. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Matrix elements 2pt correlation function Ex) Kaon Interpolating operator for Kaon : J K + ( x ) = ¯ s ( x ) γ 5 u ( x ). C 2 pt � e i � p · � x � 0 | J K ( t , � x ) J † K (0 ,� K ( t , � p ) = 0) | 0 � � x Z K p ) e − E ( � p ) t = 2 E ( � where √ Z K = � 0 | J K | K � 1 Identity matrix used is: 1 = � p | K ; � p � p ) � K ; � p | + . . . � 2 E ( � 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  15. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Matrix elements 2pt correlation function Ex) Kaon [ 1 13] 0.750 [ 2 13] [ 3 13] [ 4 13] 0.725 log (C2pt) vs. t 0.700 log(C(t)/C(t+1)) 0.675 0.650 0.625 0.600 0.575 2 4 6 8 10 12 t/a Figure 9: Kaon 2pt function with momentum [0 1 1] in log plot 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  16. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Lattice settings RBC/UKQCD generated N f = 2 + 1 dynamic Domain wall Fermion, gauge action Iwasaki-DSDR Lattice size 24 3 × 64( L ∼ 4 . 8 fm ), L 5 = 24, β = 1 . 633, m ℓ a = 0 . 00107 , m h a = 0 . 0850 , m res = 0 . 00228 a − 1 = 1 . 0 GeV, m π a = 139, m K a = 505, m π L ∼ 3 . 4 Deflated CG with 2000 Eigenvectors (basis 1000) Generated 32+1 AMA samples on 102 gauge configurations with 3 source-sink separation, i.e., t sep ∈ { 8 , 9 , 10 } To meet the kinematic condition, chose the most suitable two sets of � p for each meson. 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  17. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Matrix elements < K 0 |( us ) L u L | p > 0.075 0.070 0.065 W 0 a 2 0.060 0.055 2 = 2.355 0.050 p = [0, 1, 1] 0.045 0 1 2 3 4 5 6 t / a Figure 10: decay form factor W LL 0 ( p → K 0 e + ) at t sep = 8 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  18. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Matrix elements + |(ud) L d R |p > < + |(ud) L d L |p > < < K + |(ds) L u R |p > < K + |(ds) L u L |p > < K + |(ud) L s R |p > < K + |(ud) L s L |p > < K + |(us) L d R |p > < K + |(us) L d L |p > < K 0 |(us) L u R |p > < K 0 |(us) L u L |p > 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 W 0 a 2 Figure 11: Decay matrix elements w/ different src-sink separation { 8,9,10 } 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  19. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Matrix elements Figure 12: Decay matrix elements w/ different src-sink separation { 8,9,10 } 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

  20. Introduction Effective operators Matrix elements on lattice Excited States Future projects Reference Matrix elements Bare value, but multiplicative renormalization only − → ratio can be compared with renormalized values � � W ΓΓ ′ ( Channel ) � � W norm 0 = (3) � � 0 W ΓΓ ′ ( � K + | ( ds ) Γ u Γ ′ | p � ) � � 0 � � 2019 Lattice Workshop for US-Japan Intensit JS Yoo Proton Decay / 34

Recommend


More recommend