proton compton scattering in unified proton theory
play

Proton Compton Scattering In Unified Proton- + Theory ZHANG Yun - PowerPoint PPT Presentation

Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary 2011 Cross Strait Meeting on Particle Physics and Cosmology Proton Compton Scattering In Unified Proton- + Theory ZHANG Yun (Collaboration


  1. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary 2011 Cross Strait Meeting on Particle Physics and Cosmology Proton Compton Scattering In Unified Proton- ∆ + Theory ZHANG Yun (Collaboration With Konstantin G. Savvidy) Physics Department, Nanjing University April 1, 2011

  2. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary 1 Background and Motivation The Model 2 Proton Compton Scattering 3 Vertex Structure 4 Summary 5

  3. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary + ) freedom must be taken into ∆ + (1232MeV, J P = 3 2 account in proton Compton scattering

  4. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary + ) freedom must be taken into ∆ + (1232MeV, J P = 3 2 account in proton Compton scattering Previously p is treated as spin 1/2 Dirac spinor and ∆ + in a different theory

  5. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary + ) freedom must be taken into ∆ + (1232MeV, J P = 3 2 account in proton Compton scattering Previously p is treated as spin 1/2 Dirac spinor and ∆ + in a different theory Our innovation: We treat p and ∆ + in a unified spin 3/2 field theory

  6. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary + ) freedom must be taken into ∆ + (1232MeV, J P = 3 2 account in proton Compton scattering Previously p is treated as spin 1/2 Dirac spinor and ∆ + in a different theory Our innovation: We treat p and ∆ + in a unified spin 3/2 field theory How Motivated

  7. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary + ) freedom must be taken into ∆ + (1232MeV, J P = 3 2 account in proton Compton scattering Previously p is treated as spin 1/2 Dirac spinor and ∆ + in a different theory Our innovation: We treat p and ∆ + in a unified spin 3/2 field theory How Motivated Proton and ∆ + are both comprised of the same quarks.

  8. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary + ) freedom must be taken into ∆ + (1232MeV, J P = 3 2 account in proton Compton scattering Previously p is treated as spin 1/2 Dirac spinor and ∆ + in a different theory Our innovation: We treat p and ∆ + in a unified spin 3/2 field theory How Motivated Proton and ∆ + are both comprised of the same quarks. Three spin 1/2 particles results in 8 spin states, that for a spin 3/2 particle and two spin 1/2 particles.

  9. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary Generalized Rarita-Schwinger Theory The Lagrangian Konstantin G. Savvidy, arXiv:1005.3455: L = ¯ ψ µ [ D µν − m Θ µν ] ψ ν , D µν = γ ρ p ρ δ µν + ξ ( γ µ p ν + γ ν p µ ) + ζγ µ γ ρ p ρ γ ν , Θ µν = δ µν − z γ ν γ ν , ζ = 3 ξ 2 + 2 ξ + 1 2

  10. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary Generalized Rarita-Schwinger Theory The Lagrangian Konstantin G. Savvidy, arXiv:1005.3455: L = ¯ ψ µ [ D µν − m Θ µν ] ψ ν , D µν = γ ρ p ρ δ µν + ξ ( γ µ p ν + γ ν p µ ) + ζγ µ γ ρ p ρ γ ν , Θ µν = δ µν − z γ ν γ ν , ζ = 3 ξ 2 + 2 ξ + 1 2 L invariant under point transformation: ψ µ → ψ µ + λγ µ γ ν ψ ν ξ ′ = ξ ( 1 − 4 λ ) − 2 λ

  11. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary Generalized Rarita-Schwinger Theory The Lagrangian Konstantin G. Savvidy, arXiv:1005.3455: L = ¯ ψ µ [ D µν − m Θ µν ] ψ ν , D µν = γ ρ p ρ δ µν + ξ ( γ µ p ν + γ ν p µ ) + ζγ µ γ ρ p ρ γ ν , Θ µν = δ µν − z γ ν γ ν , ζ = 3 ξ 2 + 2 ξ + 1 2 L invariant under point transformation: ψ µ → ψ µ + λγ µ γ ν ψ ν ξ ′ = ξ ( 1 − 4 λ ) − 2 λ ξ = 2 z − 1 = ⇒ p µ ψ µ ( p ) = 0.

  12. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary Generalized Rarita-Schwinger Theory The Lagrangian Konstantin G. Savvidy, arXiv:1005.3455: L = ¯ ψ µ [ D µν − m Θ µν ] ψ ν , D µν = γ ρ p ρ δ µν + ξ ( γ µ p ν + γ ν p µ ) + ζγ µ γ ρ p ρ γ ν , Θ µν = δ µν − z γ ν γ ν , ζ = 3 ξ 2 + 2 ξ + 1 2 L invariant under point transformation: ψ µ → ψ µ + λγ µ γ ν ψ ν ξ ′ = ξ ( 1 − 4 λ ) − 2 λ ξ = 2 z − 1 = ⇒ p µ ψ µ ( p ) = 0. mass spectrum: m m 3 / 2 = m , m 1 / 2 = 6 z − 2 .

  13. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary Generalized Rarita-Schwinger Theory The Lagrangian Konstantin G. Savvidy, arXiv:1005.3455: L = ¯ ψ µ [ D µν − m Θ µν ] ψ ν , D µν = γ ρ p ρ δ µν + ξ ( γ µ p ν + γ ν p µ ) + ζγ µ γ ρ p ρ γ ν , Θ µν = δ µν − z γ ν γ ν , ζ = 3 ξ 2 + 2 ξ + 1 2 L invariant under point Original Rarita-Schwinger Theory: transformation: z = ( 1 + 3 ξ ) 2 + 3 ( 1 + ξ ) 2 . ψ µ → ψ µ + λγ µ γ ν ψ ν 4 ξ ′ = ξ ( 1 − 4 λ ) − 2 λ ξ = 2 z − 1 = ⇒ p µ ψ µ ( p ) = 0. mass spectrum: m m 3 / 2 = m , m 1 / 2 = 6 z − 2 .

  14. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary Generalized Rarita-Schwinger Theory The Lagrangian Konstantin G. Savvidy, arXiv:1005.3455: L = ¯ ψ µ [ D µν − m Θ µν ] ψ ν , D µν = γ ρ p ρ δ µν + ξ ( γ µ p ν + γ ν p µ ) + ζγ µ γ ρ p ρ γ ν , Θ µν = δ µν − z γ ν γ ν , ζ = 3 ξ 2 + 2 ξ + 1 2 L invariant under point Original Rarita-Schwinger Theory: transformation: z = ( 1 + 3 ξ ) 2 + 3 ( 1 + ξ ) 2 . ψ µ → ψ µ + λγ µ γ ν ψ ν 4 no spin 1/2 on shell ξ ′ = ξ ( 1 − 4 λ ) − 2 λ component. ξ = 2 z − 1 = ⇒ p µ ψ µ ( p ) = 0. mass spectrum: m m 3 / 2 = m , m 1 / 2 = 6 z − 2 .

  15. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary Generalized Rarita-Schwinger Theory The Lagrangian Konstantin G. Savvidy, arXiv:1005.3455: L = ¯ ψ µ [ D µν − m Θ µν ] ψ ν , D µν = γ ρ p ρ δ µν + ξ ( γ µ p ν + γ ν p µ ) + ζγ µ γ ρ p ρ γ ν , Θ µν = δ µν − z γ ν γ ν , ζ = 3 ξ 2 + 2 ξ + 1 2 L invariant under point Original Rarita-Schwinger Theory: transformation: z = ( 1 + 3 ξ ) 2 + 3 ( 1 + ξ ) 2 . ψ µ → ψ µ + λγ µ γ ν ψ ν 4 no spin 1/2 on shell ξ ′ = ξ ( 1 − 4 λ ) − 2 λ component. ξ = 2 z − 1 = ⇒ superluminal propagation p µ ψ µ ( p ) = 0. mass spectrum: m m 3 / 2 = m , m 1 / 2 = 6 z − 2 .

  16. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary L = ¯ ψ µ [ D µν − m Θ µν ] ψ ν , D µν = γ ρ p ρ δ µν + ξ ( γ µ p ν + γ ν p µ ) + ζγ µ γ ρ p ρ γ ν , Θ µν = δ µν − z γ ν γ ν

  17. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary L = ¯ ψ µ [ D µν − m Θ µν ] ψ ν , D µν = γ ρ p ρ δ µν + ξ ( γ µ p ν + γ ν p µ ) + ζγ µ γ ρ p ρ γ ν , Θ µν = δ µν − z γ ν γ ν Spin 1/2 component wave function: u 2 ( 0 , + 1 2 ) = 1 1 1 i i 1 1 3 , 0 ) T 3 z − 1 ( 0 , 0 , 0 , 0 , 0 , 3 , 0 , − 3 , 0 , 3 , 0 , − 3 , 3 , 0 , − √ √ √ √ √ √ 2 2 2 2 2 2 u 2 ( 0 , − 1 2 ) = 1 1 1 i i 1 1 3 ) T 3 z − 1 ( 0 , 0 , 0 , 0 , 3 , 0 , − 3 , 0 , − 3 , 0 , 0 , − 3 , 0 , 3 , 0 , √ √ √ √ √ √ 2 2 2 2 2 2 u µ 2 α ( k , σ ) = L µναβ ( k , M ) u ν 2 β ( 0 , σ ) L µναβ = LV µν ⊗ LS αβ LV , LS : boost matrix for vector and dirac spinor fields respectively.

  18. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary L = ¯ ψ µ [ D µν − m Θ µν ] ψ ν , D µν = γ ρ p ρ δ µν + ξ ( γ µ p ν + γ ν p µ ) + ζγ µ γ ρ p ρ γ ν , Θ µν = δ µν − z γ ν γ ν  k 1 k 2 k 3  E M M M M M − 1 ) k 2 k 1 1 + ( E ( E M − 1 ) k 1 k 2 ( E M − 1 ) k 1 k 3   1  M | � | � | �  k | 2 k | 2 k | 2   LV = M − 1 ) k 2  k 2 M − 1 ) k 2 k 1 M − 1 ) k 2 k 3  ( E 1 + ( E ( E 2   | � | � | � M k | 2 k | 2 k | 2   k 2   k 3 M − 1 ) k 3 k 1 M − 1 ) k 3 k 2 ( E ( E ( E M − 1 ) 3 M | � | � | � k | 2 k | 2 k | 2 � � E + M − � k · � σ 0 1 √ LS = E + M + � 2 M ( E + M ) 0 k · � σ

  19. Outline Background and Motivation The Model Proton Compton Scattering Vertex Structure Summary L = ¯ ψ µ [ D µν − m Θ µν ] ψ ν , D µν = γ ρ p ρ δ µν + ξ ( γ µ p ν + γ ν p µ ) + ζγ µ γ ρ p ρ γ ν , Θ µν = δ µν − z γ ν γ ν Electrodynamic Interaction p µ → p µ − A µ ⇒ L I = A µ J µ = e ¯ ψ ν Γ µνρ ψ ρ A µ , p µ J µ = 0 Γ µνρ = γ µ δ νρ + ξ ( γ ν δ µρ + γ ρ η νµ ) + ζγ ν γ µ γ ρ

Recommend


More recommend