nucleon matrix elements from moments of correlation
play

Nucleon matrix elements from Moments of Correlation Functions and - PowerPoint PPT Presentation

Nucleon matrix elements from Moments of Correlation Functions and the Proton Charge Radius Chia Cheng Chan (LBNL) Chris Bouchard (Glasgow) Kostas Orginos (JLab/WM) David Richards (JLab)* * Speaker Proton EM form factors Nucleon Pauli and


  1. Nucleon matrix elements from Moments of Correlation Functions and the Proton Charge Radius Chia Cheng Chan (LBNL) Chris Bouchard (Glasgow) Kostas Orginos (JLab/WM) David Richards (JLab)* * Speaker

  2. Proton EM form factors • Nucleon Pauli and Dirac Form Factors described in terms of matrix element of vector current F 2 ( q 2 )  � F q ( q 2 ) � µ + � µ ν q ν h N | V µ | N i ( ~ q ) = ¯ u ( ~ p f ) u ( ~ p i ) 2 m N • Alternatively, Sach’s form factors determined in experiment G E ( Q 2 ) F 1 ( Q 2 ) − Q 2 4 M 2 F 2 ( Q 2 ) = G M ( Q 2 ) F 1 ( Q 2 ) + F 2 ( Q 2 ) = Charge radius is slope at Q 2 = 0 ∂ G E ( Q 2 ) 6 h r 2 i = ∂ F 1 ( Q 2 ) � � = � 1 � F 2 (0) � � � � ∂ Q 2 ∂ Q 2 4 M 2 � � Q 2 =0 Q 2 =0

  3. EM Form factors - II Approved expt E12-07-109 PRAD: E12-11-106 Q 2 . 8 . 2 GeV 2 Q 2 . 4 . 1 GeV 2 Nucleon Charge Radius Direct calculation of charge Boosted interpolating operators radius through coordinate- space moments Bali et al ., Phys. Rev. D 93, 094515 (2016) UKQCD, Lellouch, Richards et LHPC, Syritsyn, Gambhir, Orginos et al, Lattice 2016 al. , NPB444 (1995) 401 Distillation + Operators for hadrons in flight Bouchard, Chang, Orginos, Dudek, Edwards, Thomas, Richards, Lattice 2016 Phys. Rev. D 85, 014507 (2012) 3

  4. Form Factor in LQCD q p p + q γ N 1 N 2 + Excited states - T sep suppressed at large T y, t ) ¯ X N ( ~ 0 , 0) | 0 i e − i ~ p · ~ x e − i ~ q · ~ y C 3pt ( t sep , t ; ~ q ) = h 0 | N ( ~ x, t sep ) V µ ( ~ p, ~ ~ x, ~ y Resolution of unity – insert states p | ¯ N | 0 i e − E ( ~ p + ~ q )( t sep − t ) e − E ( ~ p ) t � ! h 0 | N | N, ~ q ih N, ~ q | V µ | N ~ p ih N, ~ p + ~ p + ~

  5. Electromagnetic Form Factors Wilson-clover lattices from BMW fit to experiment 1.0 Green et al (LHPC), Phys. Rev. D 90, 074507 (2014) lattice data, m π = 149 MeV 0.8 Hadron structure at nearly- G p − n 0.6 physical quark masses E 0.4 0.2 0.0 0.0 0.1 0.2 0.3 0.4 0.5 Q 2 (GeV 2 ) Why can’t we get rid of those excited states! Smallest non-zero Q 2 determined by spatial volume ⇒ Calculate slope of form factor directly.

  6. Isgur-Wise Function and CKM matrix Extract V cb if know intercept at zero recoil Lattice Calculate slope at zero recoil.. UKQCD, L. Lellouch et al., Nucl. Phys. B444, 401 (1995), hep-lat/9410013

  7. Moment Methods • Introduce three-momentum projected three-point function D E b X e � ikx 0 N a C 3pt ( t, t 0 ) = x Γ t 0 , ~ x 0 N z 0 , ~ t, ~ 0 x, ~ ~ x 0 • Now take derivative w.r.t. k 2 − x 0 D E b X z N a C 0 3pt ( t, t 0 ) = 2 k sin ( kx 0 z ) x 0 N x Γ t 0 , ~ 0 , ~ t, ~ 0 whence x, ~ ~ x 0 − x 0 2 D E b X z N a k 2 ! 0 C 0 3pt ( t, t 0 ) = lim x 0 N . x Γ t 0 , ~ 0 , ~ t, ~ 0 2 ~ x, ~ x 0 Odd moments vanish by symmetry

  8. Moment Methods - II • Analogous expressions for two-point functions: D b E X N b e − ikx z C 2pt ( t ) = x N 0 , ~ t, ~ 0 ~ x ⇒ − x z D b E X N b C 0 2pt ( t ) = 2 k sin ( kx z ) x N 0 , ~ t, ~ 0 ⇒ ~ x − x 2 D E b X z N b k 2 ! 0 C 0 lim 2pt ( t ) = x N . 0 , ~ t, ~ 0 2 ~ x Lowest coordinate-space moment ⇔ slope at zero momentum

  9. Lattice Details • Two degenerate light-quark flavors, and strange quark set to its physical value 0 . 12 fm ' a 400 MeV ' m π 24 3 ⇥ 64 Lattice Size : • To gain control over finite-volume effects, replicate in z direction: 24 × 24 × 48 × 64

  10. Two-point correlator ln [ C 2pt ( t, x z )] Any polynomial moment in x z converges “Effective mass” ln C 2pt ( t, x z ) /C 2pt ( t, x z + 1)

  11. Three-point correlator ln [ C 3pt ( t 0 , x 0 z )] “Effective mass” • Spatial moments push the peak of the correlator away from origin • Larger finite volume corrections compared to regular correlators

  12. Fitting the data… n (0) Γ nm ( k 2 ) Z b m ( k 2 ) Z † a e � M n (0)( t � t 0 ) e � E m ( k 2 ) t 0 X C 3pt ( t, t 0 ) = 4 M n (0) E m ( k 2 ) n,m m ( k 2 ) Z b m ( k 2 ) Z b † e − E m ( k 2 ) t X C 2pt ( t ) = 2 E m ( k 2 ) m where Z † a n (0) ⌘ h Ω | N a | n, p i = (0 , 0 , 0) i b | Ω i Z b m ( k 2 ) ⌘ h m, p i = (0 , 0 , k ) | N Γ nm ( k 2 ) ⌘ h n, p i = (0 , 0 , 0) | Γ | m, p i = (0 , 0 , k ) i Allow for multi-state contributions in the fit

  13. Fitting - II • Now look at the functional form of derivatives: ✓ 2 Z b 0 m ( k 2 ) 1 ◆ t X C 2pt C 0 2pt ( t ) = m ( t ) m ( k 2 ) − 2[ E m ( k 2 )] 2 − Z b 2 E m ( k 2 ) m Γ nm ( k 2 ) + Z b 0 nm ( k 2 ) m ( k 2 ) ⇢ Γ 0 1 t 0 � X C 3pt C 0 3pt ( t, t 0 ) = nm ( t, t 0 ) m ( k 2 ) − 2[ E m ( k 2 )] 2 − Z b 2 E m ( k 2 ) n,m spatially extended Second distance sources scale

  14. Fitting - III In practice we use multi- exponential, Bayesian fits

  15. F 1 Form Factor

  16. Conclusions • Moment methods allow direct calculations of slopes of form factors at momenta allowed on lattice • Lowest (even) moment gives the slope at Q 2 = 0 . • Larger finite-volume effects than regular correlators (perhaps expected - no free lunch). • Illustrated here for u-quark contribution to EM form factor; d-quark and sea-quark contributions in progress….

Recommend


More recommend