prof phil garnsworthy nottingham university impact of
play

Prof Phil Garnsworthy Nottingham University Impact of nutrition on - PowerPoint PPT Presentation

Prof Phil Garnsworthy Nottingham University Impact of nutrition on carbon emissions Phil Garnsworthy University of Nottingham Environmental Impacts The UK is committed to reduce greenhouse gas emissions by 80% of 1990 values before 2050


  1. Prof Phil Garnsworthy Nottingham University

  2. Impact of nutrition on carbon emissions Phil Garnsworthy University of Nottingham

  3. Environmental Impacts • The UK is committed to reduce greenhouse gas emissions by 80% of 1990 values before 2050 • UK agricultural GHG emissions: – Methane (GWP 25) • Enteric fermentation, manure – Nitrous oxide (GWP 296) • Fertilizer, manure

  4. EU livestock Greenhouse Gases Mton CO 2 equivalent Enteric fermentation (CH 4 ) 148 Manure handling (CH 4 ) 52 Manure handling (N 2 O) 33 Pasture manure (N 2 O) 26 Total 260 CE Delft, 2008

  5. Greenhouse Gas Emissions from UK Agriculture 2007 1990 Other Other 0.46% 1.0% Arable Arable 19.0% 19.1% Pigs and Poultry Pigs and Poultry 6.9% 8.1% Ruminant Livestock Ruminant Livestock 73.1% 72.4% Total: 43.22 Mt CO 2 e Total: 54.64 Mt CO 2 e Gill, 2012 Source: AEA (2009) and Dairy Co (2009)

  6. Proportional contribution of livestock species in UK to production & GHGs Species Contribution Contribution to production to GHG emissions Poultry 0.48 0.26 Pigs 0.21 0.16 Cattle 0.22 0.27 Sheep 0.1 0.21 Gill, 2012

  7. UK Livestock Population % Change 1990 to 2010 Dairy Cows -36 Beef Cows +6 Sheep -29 Pigs -41 Poultry +28 DEFRA statistics

  8. Output per Head % Change 1990 to 2010 Milk yield per cow + 42 Prime beef carcase weight + 21 Lamb carcase weight + 7 Pig carcase weight +20 DEFRA statistics

  9. IPCC Methane inventory (kg/head/year) Enteric Manure Dairy cattle* 100+ 44 Other cattle 48 20 Sheep 8 0.28 Pigs 1.5 10 Poultry N/A 0.117 * Based on 4,200 kg milk/yr. Actual figure used is calculated from NE intake as 6% of GE

  10. Strategies to reduce GHG • Individual animal – Improve LWG or yield (↓ maintenance, time) – Improve FCE (↓ CFP of feeds, ↓ excretion) – Change diet (↓ CFP, methane and excretion) • System – Reduce animal wastage – Better fertility and health – Longevity

  11. Carbon footprint of feeds (g CO 2 e/kg DM) • Crop – Fertilizer (CO 2 , N 2 O) – Pesticides – Cultivation – Storage losses • Processing • Transport • Land use (C release versus sequestration) Vellinga et al.

  12. Carbon footprint (g CO 2 e/kg DM) CFP LUC Sum Grazing 329 69 398 Grass silage 304 78 382 Maize silage 163 90 252 Wheat 424 165 589 Sugar beet pulp 322 0 322 Soya bean meal 633 437 1070 Rapeseed meal 534 166 700 Vellinga et al.

  13. The Nottingham Feed Conference 25-26 June 2013 • • Liam Sinclair, Harper Adams Judith Nelson, AIC • • Nigel Kendall, Nottingham Imke Mulder, Rowett Institute • • Dave Roberts, SRUC Martin Nyachoti, Canada • • Kevin Sinclair, Nottingham Derek Armstrong, BPEX • • John Mee, Ireland Ilias Kyriazakis, Newcastle • • Pekka Huhtanen, Sweden Jos Houdijk, SRUC • • John Allen, Kite Julian Wiseman, Nottingham • Theun Vellinga, Wageningen www.nottingham.ac.uk/feedconf

  14. CH 4 500 L Urine/Faeces (69%) N 340 g Feed Milk DM 18 kg Yield 30 kg N 490 g Daily Input & N 150 g Output for an Average Cow

  15. Origin of Methane Grass Cereals (cellulose) (starch) Pyruvate Pyruvate Archaea H 2 Archaea CO 2 Methane Acetate Propionate

  16. Methane and Milk Yield 250 cows 100 cows 1 million litres 60 50 Methane (t/yr) 40 6.5% GE 30 20 Diet adjusted 10 0 4000 5000 6000 7000 8000 9000 10000 Milk yield (l/cow/yr) Garnsworthy (2004)

  17. Predicted Methane Emissions • Rowett feed factors – ME determination includes CH 4 measurement • Animal equation - Total daily Methane production is related to Dry Matter Intake Positive Proportion of concentrates in diet Negative Fibre content of diet Positive CH 4 (MJ/d) = 1.36 + 1.21 DMI – 0.825 DMconc + 12.8 NDF (Yates et al. , 2000)

  18. Effect of low and high methane diets on CH 4 Methane Diet Low High sed P . Dry matter intake (kg/d) 23.6 20.3 0.31 <0.001 Milk yield (kg/d) 32.7 32.1 0.28 0.034 Methane emission rate (g/d) 373 395 8.2 0.042 (g/kg DMI) 15.8 19.5 0.58 <0.001 42 cows, 14 days per diet, crossover design Diets: Low = commercial TMR (maize, grass & whole-crop silages; SBP, rape, soya, fat, M&V) High = Low + double grass silage (13% -> 30%) + peas (2kg/d)

  19. Diet and Nitrogen Excretion (Broderick, 2002) 3 levels of dietary CP 3 levels of dietary NDF (starch) 9 diets, 9 cows per diet

  20. CP Levels 15.1% CP 16.7% CP 18.4% CP P DMI, kg/d 21.1 22.3 22.6 0.03 Milk, kg/d 32.8 34.6 34.4 0.48 Fat, kg/d 1.15 1.24 1.20 0.33 Protein, kg/d 0.98 1.03 1.02 0.46 Milk Urea-N, mg/dL 9.2 12.4 16.0 < 0.01 Milk N/N Intake 0.31 0.28 0.25 < 0.01 Urinary N, g/d 119 169 227 < 0.01 Faecal N, g/d 231 264 278 0.04

  21. NDF (starch) Levels 36% NDF 32% NDF 28% NDF P DMI, kg/d 21.7 22.1 22.1 0.84 BW gain, kg/d 0.39 0.47 0.71 0.02 Milk, kg/d 31.4 33.8 36.5 <0.01 Fat, kg/d 1.20 1.24 1.15 0.48 Protein, kg/d 0.92 1.01 1.10 <0.01 Milk Urea-N, mg/dL 13.3 12.7 11.5 <0.01 Milk N/N Intake 0.26 0.27 0.30 < 0.01 Urinary N, g/d 182 175 158 0.10 Faecal N, g/d 253 259 262 0.64

  22. Effect of Diet on Milk Protein Yield -----28% NDF----- a a 1.10 a 0 . 3 -----32% NDF----- Protein yield, kg/d b b 1.00 0 . 2 -----36% NDF----- c cd cd 0.90 d 0 . 1 0.80 0 15.1 16.7 18.4 15.1 16.7 18.4 15.1 16.7 18.4 Dietary Crude Protein, %

  23. Human-Edible Proportion of Feeds Human-Edible Proportion Grazed pasture, silage, hay zero Cereal and pulse grains 0.8 Cereal co-products 0.2 Soyabeans and meal 0.8 Other oilseed meals 0.2 Other by-products 0.2 Minerals and vitamins zero Wilkinson (2010)

  24. Feed Conversion Efficiency of UK Livestock Systems Total Human Total Human Energy Edible Protein Edible Pig meat 0.28 0.43 0.16 0.29 Poultry meat 0.24 0.27 0.31 0.36 Eggs 0.15 0.26 0.23 0.41 Beef – Feedlot 0.10 0.21 0.11 0.29 Beef – 0.06 0.40 0.06 0.55 Grass/Cereal Lamb 0.02 0.43 0.03 0.63 Milk 0.24 2.37 0.20 1.64 Wilkinson (2010)

  25. Compare Three Least-cost Diets kg/d 40L GS 40L GSMS 40L MS Grass silage 47 28 Maize silage 23 61 Wheat 1 2.8 Barley 3.4 Rape meal 1.5 2.3 Soya meal 4 4 1.5 Fat 0.5 0.4 0.3 Mins & Vits 0.2 0.2 0.2 Cost (£/d) 3.44 3.37 3.16

  26. Compare Three Least-cost Diets 40L GS 40L GSMS 40L MS ME (MJ/d) 268 268 268 MP (g/d) 2338 2325 2324 CP (g/d) 4781 4104 3401 CP (g/kg DM) 224 185 150 Starch (g/kg DM) 43 160 257 ERDP - MCP ratio 2.07 1.49 1.00 Faecal N (g) 153 152 164 Urine N (g) 424 317 193 N excretion (g) 577 469 357 N Efficiency (%) 25 30 37 -19% -38% CFP feed (g eCO 2 /L) 273 257 229

  27. Replacement numbers 1984-2007 3 500 35 Number of Animals (000) 3 000 Dairy cows Replacement rate (%) 2 500 30 2 000 Replacement rate 1 500 3 25 1 000 lactations Heifers in calf 500 0 20 4 1980 1985 1990 1995 2000 2005 lactations Year Defra Statistics

  28. Lifetime Milk & Methane Output Lactations 3 4 Milk (t) 22.7 28.9 +27% Methane (GJ) 39.1 44.2 +13% Methane (MJ/l) 1.72 1.53 -13% Same milk from 80% of cows

  29. Proportion of cows that ovulated within 50 days of calving Control High insulin diet diet High genetic merit 50% 80% Low genetic merit 60% 100% Gong, Lee, Garnsworthy, and Webb (2002) Reproduction , 123 , 419-427.

  30. Pregnancy rate at 120 days with diets designed to improve cycling (High Starch) or oocytes (High Fat) 69 70 Pregnant at 120 days (%) 60 % of Total 60 % of Served 50 40 36 29 29 27 27 27 30 20 Neither Cycling Oocytes Both Fat /Starch Starch Fat Starch/Fat Garnsworthy et al. (2009) Reproduction 137 , 759-768

  31. Conclusions • Production efficiency (number of animals) is the main driver of total emissions and excretions • Feed intake is the main determinant of GHG per animal • Feed efficiency affects product per unit pollution • Methane and nitrogen can be manipulated by nutrition – both directly and indirectly

Recommend


More recommend