production of medical isotopes at the
play

Production of Medical Isotopes at the FRM II Research Reactor H. - PowerPoint PPT Presentation

Forschungsneutronenquelle Heinz Maier-Leibnitz (FRMII) Technische Universitt Mnchen Production of Medical Isotopes at the FRM II Research Reactor H. Gerstenberg, A. Kastenmller, A. Draack, C. Mller IGORR 2017, Sydney IGORR 2017 -


  1. Forschungsneutronenquelle Heinz Maier-Leibnitz (FRMII) Technische Universität München Production of Medical Isotopes at the FRM II Research Reactor H. Gerstenberg, A. Kastenmüller, A. Draack, C. Müller IGORR 2017, Sydney IGORR 2017 - Sydney H. Gerstenberg et. al.

  2. Technische Universität München FRM II: Key Parameters - power: 20 MW - cycle length: 60 d - 240 operational days / year Mission of FRM II - basic research by n-beams but as an add-on also - Si doping - Production of medical isotopes - Cancer therapy - Production of tracer isotopes - Neutron Radiography - Neutron tomography, - … IGORR 2017 - Sydney H. Gerstenberg et. al.

  3. Technische Universität München Lu-177: T 1/2 = 6.7 d E(ß) max = 498 keV E γ = 208 keV (11%) Range in human tissue: 2 mm Applications: prostate cancer NED tumours FRM II IGORR 2017 - Sydney H. Gerstenberg et. al.

  4. Technische Universität München Different production routes to Lu-177 Hf 176 Hf 177 5.206 18.60 Production Lu 175 Lu 176 Lu 177 97.41 2.59 Undesirable 6.71d σ 8 σ 3 + 2070  - side reaction 160.1 d  - Yb 174 Yb 175 Yb 176 Yb 177 31.8 4.2 d 12.7 1.9 h   σ 68 σ 3 Therapy IGORR 2017 - Sydney H. Gerstenberg et. al.

  5. Technische Universität München Isotopic contents in Lu-177 and Lu-177 n.c.a. 177 Lu c.a. SF-ICP-MS 177 Lu n.c.a. 12 177 Lu/ 177 Hf Isotope distribution (relative scale ) 10 8 6 4 2 0 174 175 176 177 178 179 Mass Zhernosekov et al.; 2011 DGN Bregenz IGORR 2017 - Sydney H. Gerstenberg et. al.

  6. Technische Universität München Top view into the reactor pool Isotope production (Lu-177 n.c.a.) IGORR 2017 - Sydney H. Gerstenberg et. al.

  7. Technische Universität München Hydraulic Irradiation Facility for Isotope Production Φ th (cm -2 s -1 ) 9.3E13 1.3E14 Stack of irradiation Canning of Yb 2 O 3 capsules Loading / Unloading device IGORR 2017 - Sydney H. Gerstenberg et. al.

  8. Technische Universität München Idea of Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors IGORR 2017 - Sydney H. Gerstenberg et. al.

  9. Technische Universität München Ho-166 microspheres for the radioembolization of liver tumors Ho-165 (n, γ ) Ho-166 Production route PLLA microspheres Material with holmium-166 Mean diameter (  m) 30 1850 keV (50.0%) Therapeutic β -emission 1770 keV (48.7%) Half-life (h) 26.8 Patient dose (GBq) 2-12 courtesy of IGORR 2017 - Sydney H. Gerstenberg et. al.

  10. Technische Universität München Irradiation using the Pneumatic Rabbit System (RPA) Requirements to be met: • High accuracy with respect to Ho-166 target activity • Low heat load to microspheres • Low fast neutron flux density to guarantee mechanical integrity RPA of microspheres. IGORR 2017 - Sydney H. Gerstenberg et. al.

  11. Technische Universität München Unique Blood source for liver: • 70% portal vein • 30% hepatic artery Blood source for tumor: • 99% hepatic artery courtesy of

  12. Technische Universität München Status of Mo-99/Tc-99m in Germany: Highest consumption in Europe; No present contribution to supply Rossendorfer Forschungsreaktor (until 1989) Research Reactor DIDO, FZJülich (until 2006) IGORR 2017 - Sydney H. Gerstenberg et. al.

  13. Technische Universität München Challenges to be met in Mo-99 Production at FRM II • Simultaneous irradiation of 16 (at least 12) targets • Neutron flux density in target postion > 1E14 (1/cm²s) • Heat release from targets during irradiation : ≈400 kW • Loading and unloading of targets during reactor operation Licensing Procedure according to • Integration into reactor safety instrumentation German Atomic Law • Evaluation of possible interference with scientific intruments • Development of handling tools • Loading of freshly irradiated targets into transport casks • Adaption of infrastructure (elevator, radioprotection equipment,..) • Staff, cost, time schedule IGORR 2017 - Sydney H. Gerstenberg et. al.

  14. Technische Universität München Irradiation position Design of the Irradiation Rig Top view of irradiation rig holder for up to 4 targets IGORR 2017 - Sydney H. Gerstenberg et. al.

  15. Technische Universität München Design of the cooling unit Natural convection battery buffer of nuclear heat: P th ≈ 420 kW pumps: 10 min IGORR 2017 - Sydney H. Gerstenberg et. al.

  16. Technische Universität München Integration of Mo-99 facility into FRM II reactor pool Loading and Unloading Transfer into in-pile part Targets in Irradiation position Fuel assembly IGORR 2017 - Sydney H. Gerstenberg et. al.

  17. Technische Universität München Full size mockup of changing unit Under-water test using a mock-up: Test of mechanical function: Handling of the transport unit Loading and unloading of targets Trouble shooting Test of electrical function: Sensors, motor and cable Some Data of the water tank: Height 3,5 m Water 17 m³ Weight ca. 23,2 to IGORR 2017 - Sydney H. Gerstenberg et. al.

  18. Technische Universität München Summary of important parameters LEU target irradiationIrradiation positons: 2 channels Max. number of targets 2 * 8 LEU targets 1.7 * 10 14 n cm -2 s -1 Average thermal flux within meat of target: Anticipated Mo-99 production: 32 weeks/year Max. Mo-99 activity after 156 h of irradiation (EOI): 16 700 Ci Expected available capacity per week (6-day Ci): ~ 2 100 Ci Anticipated start of production: 2019 IGORR 2017 - Sydney H. Gerstenberg et. al.

  19. Technische Universität München Thank you ! (heiko.gerstenberg@frm2.tum.de) IGORR 2017 - Sydney H. Gerstenberg et. al.

Recommend


More recommend