stable water isotopes
play

Stable Water Isotopes Type MW % of total ppb 1 H 1 H 16 O 18 - PDF document

CEE 680 Lecture #4 1/28/2020 Print version Updated: 28 January 2020 Lecture #4 Isotopes (cont); Kinetics and Thermodynamics: Fundamentals of water and Ionic Strength (Stumm & Morgan, pp.1 15 Brezonik & Arnold, pg 10 18)


  1. CEE 680 Lecture #4 1/28/2020 Print version Updated: 28 January 2020 Lecture #4 Isotopes (cont); Kinetics and Thermodynamics: Fundamentals of water and Ionic Strength (Stumm & Morgan, pp.1 ‐ 15 Brezonik & Arnold, pg 10 ‐ 18) (Benjamin, 1.2, 1.3, 1.5) Best source for stable isotopes is: Eby, Chapter 6, especially pg. 181-186 David Reckhow CEE 680 #4 1 Stable Water Isotopes Type MW % of total ppb 1 H 1 H 16 O 18 99.731 997,310,000 Hydrology Used in 1 H 1 H 18 O 20 0.2000 2,000,000 1 H 1 H 17 O 19 0.03789 378,900 Heavy Water 1 H 2 H 16 O 19 0.03146 314,600 1 H 2 H 18 O 21 6.116x10 ‐ 5 612 1 H 2 H 17 O 1.122x10 ‐ 5 20 112 2 H 2 H 16 O 20 2.245x10 ‐ 6 22 2 H 2 H 18 O 6x10 ‐ 9 22 0.06 2 H 2 H 17 O 21 1x10 ‐ 9 0.01 Based on: Millero & Sohn, 1992 Chemical Oceanography, CRC Press; and Gat, 2010 Isotope Hydrology, Imperial College Press David Reckhow CEE 680 #2 2 1

  2. CEE 680 Lecture #4 1/28/2020 Properties of Stable Water Isotopes Property 1 H 1 H 16 O 1 H 1 H 18 O 1 H 2 H 16 O 2 H 2 H 16 O units Density @30°C 1.107845 1.04945 1.10323 g/mL Temp@ d max 4.305 11.24 °C Boiling Pt 100.14 101.42 °C Melting Pt 0.28 3.81 °C 10 3 cm 2 s ‐ 1 Diffusivity in water 2.66 2.34 @25°C Relative diffusivity in air 1.0000 0.9723 0.9755 From: Gat, 2010 Isotope Hydrology, Imperial College Press and references therein David Reckhow CEE 680 #3 3 Measurement  Requires separation of H from O in water  Hydrogen goes to H2 with help of a hot metal catalyst  Oxygen goes to O2 by hydrolysis or fluorination or to CO2 by aqueous equilibration  Then use an isotope ratio instrument  Magnetic sector Mass Spectrometer  Wavelength ‐ Scanned Cavity Ring Down Spectrometer (WS ‐ CRDS) David Reckhow CEE 680 #3 4 2

  3. CEE 680 Lecture #4 1/28/2020 Relative Isotopic Abundance  Reflects environmental fractionation  Helps describe origins, pathways, processes  Tracer  Calculation based on a standard material  Uses ratios of abundance; eg: 𝑆 ������ � 𝑆 �������� 𝜀 � 𝑦 1000 𝑆 ��������   18 O    R  Where: R is the isotopic ratio, e.g., for oxygen 16 O Fundamentals of Isotope Geochemistry David Reckhow CEE 680 #2 5 Isotopic Standards in % Ratio Nominal V ‐ SMOW PDB 2 H/ 1 H 0.015 0.015576 13 C/ 12 C 1.1 1.12375 18 O/ 16 O 0.2 0.20052 0.20672  Key to Standards  V ‐ SMOW = Vienna Standard Mean Ocean Water  established by IAEA in Vienna; blend of ocean waters around globe  PDB = PeeDee Belemnite (high 13 C/ 12 C ratio)  Fossilized cephalopods from the PeeDee River in SC David Reckhow CEE 680 #3 6 3

  4. CEE 680 Lecture #4 1/28/2020 Evaporation of water: fractionation  For 2 H  For 18 O 1.16 𝟐𝟗 𝑷 𝟑 1.016 𝑰 � � 𝟐𝟕 𝑷 𝟐 𝑰 1.14 𝒎𝒋𝒓𝒗𝒋𝒆 𝜷 𝟐𝟗 � 𝒎𝒋𝒓𝒗𝒋𝒆 1.014 𝜷 𝑬 � 𝟐𝟗 𝑷 𝟑 𝑰 � Fractionation Factor (  18 ) 1.12 � Fractionation Factor (  D ) 𝟐𝟕 1.012 𝑷 𝟐 𝑰 𝒘𝒃𝒒𝒑𝒔 𝒘𝒃𝒒𝒑𝒔 1.10 1.010 1.08 1.008 1.06 1.006 1.004 1.04 1.002 1.02 1.000 1.00 -20 0 20 40 60 80 100 -20 0 20 40 60 80 100 Temperature ( o C) Temperature ( o C) Data from: Dansgaard, 1964 David Reckhow CEE 680 #3 7 example  A rainwater sample from Boston has an 18 O/ 16 O ratio of 0.0019750 as determined by isotope ratio MS. Calculate the delta value vs V ‐ SMOW (in ‰) 1. 𝑆 ������ � 𝑆 �������� 0.0019750 � 0.0020052 𝜀 � 𝑦 1000 � 𝑦 1000 � �𝟐𝟔 . 𝟐 𝑆 �������� 0.0020052 Determine the delta value for the water vapor that is in 2. equilibrium with at 20C 𝜷 𝟐𝟗 � 𝟏 . 𝟏𝟏𝟐𝟘𝟖𝟔𝟏 � 𝟐 . 𝟏𝟏𝟘 𝑺 𝒘𝒃𝒒𝒑𝒔 𝟐𝟗 𝑷 𝑆 ����� � 0.0019574 � 𝟐𝟕 𝑷 𝒎𝒋𝒓𝒗𝒋𝒆 𝜷 𝟐𝟗 � � 𝟐 . 𝟏𝟏𝟘 𝟐𝟗 𝑷 � 𝟐𝟕 𝑷 0.0019750 � 0.0020052 𝒘𝒃𝒒𝒑𝒔 𝜀 � 𝑦 1000 � �𝟑𝟒 . 𝟗 0.0020052 David Reckhow CEE 680 #3 8 4

  5. CEE 680 Lecture #4 1/28/2020 Vapor washout  Rayleigh distillation  Water vapor is enriched in the light isotopes ( 16 O and 1 H) compared to the water from which it evaporated  As rain drops form there is selective loss of the heavier isotopes ( 18 O and 2 H) from the vapor to the rain drops David Reckhow CEE 680 #3 9 Selective enrichment in nature  Mass ‐ based Effects: Fractionation  Evaporation & freezing  selective concentration of heavy isotopes  Bonding Effects  plants preferentially take up carbon dioxide containing the lighter carbon isotope ( 12 C ‐ CO 2 ) in photosynthesis, but the degree of preference depends on water availability, CO2 availability and on the photosynthetic pathway  C3 vs C4 plants (PEP carboxylase) David Reckhow CEE 680 #2 10 5

  6. CEE 680 Lecture #4 1/28/2020 Radioactive isotopes for dating  Radioisotope dating Radio ‐ Half ‐ life isotope (years) 10 Be 1,360,000 36 Cl 301,000 81 Kr 229,000 14 C 5,730 39 Ar 269 3 H 12 85 Kr 11 Image from: https://www.phy.anl.gov/mep/atta/ research/atta.html David Reckhow CEE 680 #3 11 Image from: Radioactive tracers https://www.skepticalscience. com/print.php?n=3962  Carbon ‐ 14 David Reckhow CEE 680 #3 12 6

  7. CEE 680 Lecture #4 1/28/2020 Molecular Weight and boiling point  Organic Compounds: Homologous series Image from: http://chemed.chem.purdue.edu/genchem/topicrevie Image from: https://socratic.org/questions/how-does-molar-mass- w/bp/ch14/liquids.php affect-boiling-point David Reckhow CEE 680 #4 13 Water and related heteroatoms  Water is different Groups “hydrides” Image From: http://schoolbag.info/chemistry/central/100.html David Reckhow CEE 680 #4 14 7

  8. CEE 680 Lecture #4 1/28/2020 Water is exceptional  From Eby, 2016 (Table 1 ‐ 7) Property Comparison to other substances Heat capacity Highest of all common liquids (except ammonia) and solids Latent heat of fusion Highest of all common liquids (except ammonia) and most solids Latent heat of Highest of all common substances vaporization Dissolving ability Dissolved more substances (particularly ionic compounds), and in greater quantity than any other common liquid Transparency Relatively high for visible light Physical state The only substance that occurs naturally in all three states at the earth’s surface Surface tension Highest of all common liquids Conduction of heat Highest of all common liquids (Hg is higher) Viscosity Relatively low viscosity for a liquid David Reckhow CEE 680 #4 15 Structure of Water S&M: Fig. 1.3  sp 3 hybridization  2 bonding and 2 non ‐ bonding orbitals  Dipolar Character S&M: Fig. 1.4  Origin of Water’s Unusual properties  High melting and boiling point  High heat of vaporization  Expands upon freezing  High surface tension  Excellent polar solvent B: Fig 1.1 David Reckhow CEE 680 #4 16 8

  9. CEE 680 Lecture #4 1/28/2020 Hydrogen bonding  Dipole nature of water and hydrogen bond formation  H 2 O H 4 O 2 H 6 O 3 Images courtesy of Benjamin David Reckhow CEE 680 #4 17 Water’s intermolecular structure  Dominated by Hydrogen Fig. 1.5a Bonds Pg. 8  Ice  Open tetrahedral structure  Water  Flickering cluster model  100 ps lifetime  0.1 ps molecular vibration Fig. 1.5b Pg. 8 David Reckhow CEE 680 #4 18 9

  10. CEE 680 Lecture #4 1/28/2020 Freezing and density  Crystalline structure  Lower density than liquid water  Max density is at 4°C Images from Eby, 2016 David Reckhow CEE 680 #4 19 Solutes in Water  Great solvent for ionic or ionizable substances  Ion ‐ dipole bonds improves stability S&M: Fig. 1.6  Energy increases with charge of ion and decreases with size  Solvent hole model  As solute ‐ water bonding strengthens B: Fig 1.3 compared to water ‐ water bonding, solubility goes up  Hydrophilic solute  Weak solute ‐ water bonds reduce solubility  Hydrophobic solutes David Reckhow CEE 680 #4 20 10

  11. CEE 680 Lecture #4 1/28/2020 Periodic Table David Reckhow CEE 680 #4 21 “680 Periodic Table” H 4.5 He H 2 O -1.74 -1.74 8.8 Li 6.3 Be B 7.0 C 4.9 N 6.3 O 4.5 F 5.7 Ne BeOH + (?) Li + H 3 BO 4 HCO 3 - N 2 , NO 3 - H 2 O, O 2 F - , MgF + 4.6 9.2 3.39 2.64 3.0 1.97 -1.74 -1.74 4.17 5.3 8.15 Na 7.7 Mg 7 Al 2 Si 3.8 P 4 S 6.9 Cl 7.9 Ar Na + Mg +2 , MgSO 4 Al(OH) 4 - H 4 SiO 4 HPO 4 -2 SO 4 -2 ,NaSO 4 - Cl - 0.33 3.57 1.27 3.77 7.1 4.15 3.8 5.3 1.55 3.92 0.26 3.66 6.96 K 6.7 Ca 5.9 As Se 4 Br 8 Kr K + Ca +2 , CaSO 4 HAsO 4 -2 SeO 3 -2 Br - 1.99 4.23 1.99 3.42 7.3 8.6 3.08 8.6 Sr 6.6 I  Ocean residence time (log yr) 6  Predominant species Sr +2 I - , IO 3 - 4.05 6.3  River Water conc. ( ‐ log M) Ba 4.5  Seawater conc. ( ‐ log M) Ba +2 6.8 After S&M:Fig. 1.7, Pg. 10 David Reckhow CEE 680 #4 22 11

Recommend


More recommend