reaction measurements on and with radioactive isotopes
play

Reaction measurements on and with radioactive isotopes for nuclear - PowerPoint PPT Presentation

Reaction measurements on and with radioactive isotopes for nuclear astrophysics Ren Reifarth GSI Darmstadt/University of Frankfurt NORDIC WINTER MEETING ON PHYSICS @ FAIR Bjrkliden, Sweden, March 22-26, 2010 Outline Charged-particle


  1. Reaction measurements on and with radioactive isotopes for nuclear astrophysics René Reifarth GSI Darmstadt/University of Frankfurt NORDIC WINTER MEETING ON PHYSICS @ FAIR Björkliden, Sweden, March 22-26, 2010

  2. Outline • Charged-particle induced reactions • Gamma-induced reactions • Neutron-induced reactions René Reifarth (GSI / U. Frankfurt)

  3. Nucleosynthesis of the elements p-process s-process rp-process Proton number Heavy elements (A>56) are produced by the r-process s-process (~50%) and the r-process (~50%) Fusion up to iron Neutron number René Reifarth (GSI / U. Frankfurt)

  4. Astrophysics motivation: the p-process • 35 stable neutron-deficient isotopes between 74 Se and 196 Hg • Dominating reactions: (p, γ ) for light nuclei; ( γ ,n), ( γ ,p), ( γ , α ) and β + decays for heavier nuclei • Temperatures of 2-3×10 9 K during time scales of a few seconds are required (type II supernovae explosions) p-nuclide r- or s- seed nuclei unstable nuclei René Reifarth (GSI / U. Frankfurt)

  5. Typ II Supernovae (core collaps supernovae) Left overs from SN form new stars and planets crab nebula – SN 1054 (NASA) SN 1987A (NASA) René Reifarth (GSI / U. Frankfurt)

  6. Charged-particle induced • (p, γ ), (a, γ ) in the Gamow window • for heavy elements during p-process: ~ several MeV René Reifarth (GSI / U. Frankfurt)

  7. Experimental determination of cross sections • Traditional method: – Produce target, irradiate with H, He beam – Detect products • Delayed (activation) Isotope of interest • Prompt (gammas) p-, α -beam (1-10 AMeV) gammas d e t e c t o r René Reifarth (GSI / U. Frankfurt)

  8. Example: 103 Rh(p, γ ) at FZK (KIT) • pulsed proton beam from 3.7 MV Van de Graaff • metallic rhodium target in center • gamma detection with 4 π BaF 2 ball • high efficiency • background discrimination via • sum energy, multiplicity • time relative to proton pulse M. Weigand et. al, DPG Spring Meeting 2010 (Bonn) René Reifarth (GSI / U. Frankfurt)

  9. g-energy vs. time René Reifarth (GSI / U. Frankfurt)

  10. 2 MeV protons on 103 Rh 104 Pd * ( γ ) 104 Pd Gamow window: 1.7 – 4.3 MeV René Reifarth (GSI / U. Frankfurt)

  11. 3 MeV protons on 103 Rh 104 Pd * ( γ ) 104 Pd Gamow window: 1.7 – 4.3 MeV René Reifarth (GSI / U. Frankfurt)

  12. Experimental determination of cross sections • Method for radioactive beams: – Inverse kinematics – Gas target (H, He) since limited range of ions – Produce beam of radioactive ions – Storage ring – Detect prompt products • Gammas • Ions René Reifarth (GSI / U. Frankfurt)

  13. Reaction Studies at the ESR Particle detectors Measurements of (p, γ ) or ( α , γ ) rates in the Gamow window of the p-process in inverse kinematics. Advantages: • Applicable to radioactive nuclei • Detection of ions via in-ring particle Gas jet detectors (low background, high efficiency) • Knowledge of line intensities of product nucleus not necessary • Applicable to gases ESR René Reifarth (GSI / U. Frankfurt)

  14. Layout of the experimental facilities at GSI Fragmentation in LAND/ALADIN separated KaoS in Cave C in Cave C FRS target degrader fragment beam Stable beam from SIS C B FRS SIS ESR SIS René Reifarth (GSI / U. Frankfurt)

  15. Reaction Studies at the ESR First pilot experiment performed with stable beams: 96 Ru(p, γ ) 97 Rh • Measurements performed at 9, 10, 11 AMeV • 5·10 6 particles per spill • Target density 1·10 13 atoms/cm 2 • Luminosity 2.5·10 25 • Cross section 2 mbarn -> ~180 counts/h Range of pilot experiment GAMOW WINDOW Q. Zhong et al., Journal of Physics: Conference Series, Volume 202, Issue 1, pp. 012011 (2010) René Reifarth (GSI / U. Frankfurt)

  16. Simulations with LISE++ 96 Ru - primary beam Yield 96 Ru(p, γ ) 96 Ru(p,n) 96 Ru(p, α ) -100 -60 -20 20 60 100 140 160 x in mm René Reifarth (GSI / U. Frankfurt)

  17. Reaction Studies at the ESR Particle detectors: Double sided silicon strip (16 x 16) inside pockets Particle detectors Gas jet y in mm ESR x in mm René Reifarth (GSI / U. Frankfurt)

  18. Analysis of position spectrum X-position (mm) Pocket_MWPC Pocket_DSSSD Main Reactions: 96 Ru(p, γ ) 97 Rh 96 Ru(p,n) 96 Rh Components of the 96 Ru(p, α ) 93 Tc spectrum can be 96 Ru 44+ � 96 Ru 43+ disentangled based on x- position 96 Ru 44+ � 96 Ru 44+ René Reifarth (GSI / U. Frankfurt)

  19. Normalization of the cross section Detection of atomic electron pick-up in the gas target ( 96 Ru 44+ +e - -> 96 Ru 43+ ): Particle detectors Detection of 96 Ru 43+ in MW detector Gas jet K- AL PHA Detection of x-rays at the target K- REC K- BET A ESR K- GAMMA René Reifarth (GSI / U. Frankfurt)

  20. Preliminary result @ 11 MeV – upper limit Ignore (p,n) component – resulting in an upper limit for (p, γ ) σ PG ~ 4.0 mb Non-smoker: 3.5 mb René Reifarth (GSI / U. Frankfurt)

  21. Outlook • Improvements of particle detection – higher position resolution – Z-resolution – inside vacuum – better coverage • radioactive isotopes with FAIR • Program to establish a grid of measured reaction rates for the p-process is possible • (p, γ ) in Gamow window planned for 2011 • ( α,γ ) proof of principle planned for 2011 René Reifarth (GSI / U. Frankfurt)

  22. EXL - Exotic nuclei studied in Light-ion induced reactions at the NESR storage ring 4 – 500 AMeV t 1/2 > 0.1 s - Hydrogen - Helium From: EXL Executive Summery René Reifarth (GSI / U. Frankfurt)

  23. Gamma-induced • Measurements close to particle threshold – ( γ ,n), ( γ ,p), ( γ ,a), [ ( γ ,f) ] • Traditional method: – Produce target – Produce gamma-rays • Bremstrahlung, variable endpoint energy (S-DALINAC, ELBE) • Inverse compton, “mono-energetic” (HI γ S) – Detect reaction products via activation technique gammas e - -beam (5-15 MeV) Metal Isotope of interest René Reifarth (GSI / U. Frankfurt)

  24. Photoactivation experiments High Intensity Photon Setup (HIPS) @ TUD J. Hasper, K. Sonnabend et al. , Phys. Rev. C 77 (2008) 015803 K. Sonnabend et al. , Phys. Rev. C 70 (2004) 035802 René Reifarth (GSI / U. Frankfurt)

  25. Photoactivation experiments High Intensity γ -ray Source (HI γ S) @ DFELL, TUNL René Reifarth (GSI / U. Frankfurt)

  26. Coulomb dissociation • Method for radioactive beams: – Inverse kinematics – “virtual photon field” as result of relativistic interaction with high-Z target (lead) – Produce beam of radioactive ions – In-beam experiment – Detect ALL prompt products • Gammas • Ions René Reifarth (GSI / U. Frankfurt)

  27. Experimental method Astrophysically relevant energy window: E γ ≈ S n + kT/2 = 8-12 MeV, width ~ 1 MeV Coulomb dissociation in inverse kinematics: • Virtual photons produced by a v~c high-Z target (Pb) Mo • Projectile at ~500 MeV/u b virtual γ • Large impact parameter b Pb • E max of the virtual photon spectrum ~ 20 MeV • C and empty target measurements (to subtract nuclear contribution and background) Important: results for the stable isotopes can be compared with measurements with real photons on ELBE (FZD) and S-DALINAC (TUD). René Reifarth (GSI / U. Frankfurt)

  28. ( γ ,n) reaction on Mo isotopes - why? Isotopic abundance calculations: • Large networks • Most of the reaction rates from the statistical model • 92 Mo has one of the highest cosmic abundances of all p-nuclei • Ru and Mo isotopes are significantly underproduced in all existing network calculations • Studied isotopes: • 92 Mo, 94 Mo, 100 Mo (stable) – to verify the method; • 93 Mo (t 1/2 = 4*10 3 y) – reaction rate not measured before O. Ershowa et. al, DPG Spring Meeting 2010 (Bonn) René Reifarth (GSI / U. Frankfurt)

  29. Layout of the experimental facilities at GSI Fragmentation in LAND/ALADIN separated in Cave C KaoS in Cave C FRS target degrader fragment beam Stable beam from SIS C B FRS SIS ESR SIS 1) 100 Mo, 94 Mo: primary beams to Cave C (500 MeV/u); 2) 93 Mo, 92 Mo: secondary beams (500 MeV/u) from 94 Mo (700 MeV/u). René Reifarth (GSI / U. Frankfurt)

  30. LAND/ALADiN setup neutrons ~500 MeV/u Mo beam f r a g m e n t s Pb target The LAND setup provides full kinematical measurements PSP1, 2, 3: dE, x, y POS: t CS: dE, θ , φ (gammas) GFI1, 2, 3: x TFW: dE, t LAND: dE, t, x, y, z (neutrons) 6 26.03.2010 René Reifarth (GSI / U. Frankfurt)

  31. Incoming beam ID dE Charge 92 Mo ∝ ( β − Z f ) dx A/Z A = ρ e B βγ Z uc René Reifarth (GSI / U. Frankfurt)

  32. Outgoing beam ID: Z Fragment charge (with a cut on incoming 92 Mo) Counts Z TFW Mo σ = 0.22 Z PSP3 Counts Z PSP3 σ = 0.49 Break-up between PSP3 and TFW René Reifarth (GSI / U. Frankfurt)

  33. Outgoing beam ID: mass Fragment mass (with cuts on incoming 100 Mo , outgoing Z=42 (Mo) and neutron multiplicity in LAND =1 ) 100 Mo( γ ,n) 99 Mo Fixed σ , determined from the Counts non-reacting beam: Counts 100 Mo( γ ,2n) 98 Mo σ = 0.39 A A René Reifarth (GSI / U. Frankfurt)

Recommend


More recommend