probabilistic online prediction of robot actions results
play

Probabilistic Online Prediction of Robot Actions Results based on - PowerPoint PPT Presentation

Probabilistic Online Prediction of Robot Actions Results based on Physics Simulation Functional Imagination Sebastian Rockel TAMS, University of Hamburg, Hamburg Nov. 30, 2015 Journal of Economic PerspectivesVolume 29, Number


  1. 
 Probabilistic Online Prediction of Robot Actions Results based on Physics Simulation ”Functional Imagination“ Sebastian Rockel 
 TAMS, University of Hamburg, Hamburg Nov. 30, 2015

  2. Journal of Economic Perspectives—Volume 29, Number 3—Summer 2015—Pages 51–60 Is a Cambrian Explosion Coming for Robotics? Gill A. Pratt Eight Technical Drivers 1. Exponential growth in computing performance 2. Improvements in electromechanical design tools and numerically controlled manufacturing tools 3. Improvements in electrical energy storage 4. Improvements in electronics power efficiency 5. Exponential expansion of the availability and performance of local wireless digital communications 6. Exponential growth in the scale and performance of the Internet 7. Exponential growth of worldwide data storage 8. Exponential growth in global computation power 2

  3. Journal of Economic Perspectives—Volume 29, Number 3—Summer 2015—Pages 51–60 Is a Cambrian Explosion Coming for Robotics? Gill A. Pratt Cloud Robotics: Big Idea #3: Learning from Imagination 3

  4. Outline 1. Related Work 2. Architecture & Integration 3. Uncertainty 4. Experiments & Results 5. Conclusion 4

  5. Task Planning symbolism Table Table Table discreteness x,y,z … x,y,z x,y,z x,y,z x,y,z x,y,z continuity 5

  6. Functional Imagination • improve task-planning based system • use prediction from physical simulation • integrate prediction • use predicted results to adapt 
 plan execution • forestall failures 6

  7. Related Work • concurrent reactive planning (Beetz 2000) • meta-CSP: hybrid planning/reasoning (Moffit et al. 2006) • functional imagination (Marques et al. 2008) • GTP + HTN (de Silva et al. 2013) 7

  8. (2012-2015) • ”Robustness by Autonomous Competence Enhancement“ • high-level world representation • multi-level experience representation • learning and generalizing from experiences 8

  9. RACE Architecture plan ROS OWL concepts actions Semantic ROBOT sensor HTN Execution data Planner OWL Monitor action Capabilities Ontology results initial state, plan, fluents, goal goal schedule new concepts plan continuous Conceptualizer ex − data periences Blackboard Perception fluents fluents OWL concepts fluents Perceptual ex − Reasoning fluents instructions periences Memory and Interpretation Experience instructions User Extractor/ Annotator Interface 9

  10. Methodology hierarchical Sense Plan Act Sense Plan Imagine Act 10

  11. Methodology (cont’d) reactive Plan Sense Act Plan Sense Act Imagine 11

  12. Processing plan generation execution evaluation is 
 yes no imagine 
 action? projection simulation robot 12

  13. Architecture Robot plan Capabilities Planner ROS actions Executor fluents imagine 
 results actions fluents Black- Functional Simulation 1 Simulation 1 Simulation 1 board Imagination imagine 
 actions 13

  14. Architecture (cont’d) Imagination Client 1 (PC 1) Functional Imagination Client 1 (PC 1) Imagination Client 1 (PC 1) Imagination Executor Blackboard Black- Executor Blackboard Executor board Evaluation Translation Simulation 1 Simulation 1 Simulation 1 14

  15. Plan Adaptation time execution act1 … … act<..> par1 imagination par2 par3 15

  16. Plan Adaptation (cont’d) SHOP2: grasp_object_w_arm 
 mug1 
 rightarm1 assume_manipulation_pose 
 !pick_up_object 
 leave_manipulation_pose 
 manipulationareaeastcounter1 
 mug1 
 manipulationareaeastcounter1 rightarm1 rightarm1 assume_manipulation_pose 
 !move_base_blind 
 !move_torso 
 manipulationareaeastcounter1 
 premanipulationareaeastcounter1 torsoupposture rightarm1 (S. Stock, Univ. Osnabrück) !imagine ?task ?arg1 ?arg2 !imagine !move_base_param ?area slow/fast 16

  17. Execution & Imagination • projection : generate world state foreach !imagine action • translation : converting symbolic (blackboard) values in discrete coordinates • FI evaluates best confidence and shortest time • FI returns ordered list of parametrization + duration 17

  18. Sampling • sampling: f s = 20 Hz • discretization: • carry tall object: z 18

  19. Handling Uncertainty • variables: (event 1), (event 2), .. a 1 a 2 • empirical coefficients: (event 1), (event 2), .. c 2 c 1 • confidence: • carry tall object: 19

  20. Assumptions & Limitations • discrete thresholds (empirically defined) • discrete (action) parameter set • one action per imagination (plan-step sync) • performance correlation to simulation granularity • exogenous events rarely occur • ”challenging“ simulation 20

  21. Experiments 1. simulation validation 2. recognition & manipulation 3. serve a coffee 4. carry a tall object 21

  22. Simulation Validation PMA NorthTable1 nearStartArea1 North table1 table2 PMA WestTable2 PMA EastTable2 PMA EastCounter1 PMA SouthTable1 counter1 22

  23. Simulation Validation (cont’d) 30 25 Duration Mean in [s] 20 15 10 5 0 1 2 3 4 5 6 7 8 9 10 11 12 1 mb_f EC1/ET2 5 Standard Deviation in [s] 2 mb_s EC1/ET2 Simulation 3 mb_f EC1/NT1 PR2 4 4 mb_s EC1/NT1 5 mb_f ET2/EC1 3 6 mb_s ET2/EC1 7 mb_f NT1/EC1 2 8 mb_s NT1/EC1 1 9 mt U/D 10 mt D/U 0 11 ta U/T 1 2 3 4 5 6 7 8 9 10 11 12 12 ta T/U 23

  24. Recognition & Manipulation Recognition Probability torso up torso down 0,58 0,56 0,54 0,51 0,49 front back left right 24

  25. Serve a Coffee (ICRA 2014) PMA North NorthTable1 table1 counter PMA Fail SouthTable1 robot execution re-planning/imagination standard prediction 0 75 150 225 300 25

  26. Carry a Tall Object (IROS 2015) 26

  27. Carry a Tall Object (IROS 2015) slow fast 27

  28. My code online available.. • https://github.com/buzzer/pr2_imagination • https://github.com/buzzer/tams_pr2 28

  29. Conclusion • improved task-planning system with ”functional imagination“ • ”common-sense“ physics-based prediction (cf. Marques, De Silva) • enabling hybrid reasoning (cf. Moffit) • based on action parametrization (cf. Beetz) • probabilistic projection (sampling, confidence) • validation of simulation • new system on a PR2 (out-of-the-box HTN + Gazebo) 29

  30. Future Research • improve the robot’s performance in changing and partly unknown worlds • partial plan imagination • continuous representations (parameter + sampling) • exploit temporal aspects (re-scheduling) • reactive perception + imagination • cloud robotics 30

  31. Thank you for your attention! 31

  32. References Lavindra de Silva, Amit Kumar Pandey, and Rachid Alami. An interface for interleaved symbolic-geometric planning and backtracking. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS) , 2013. Hugo Gravato Marques, Owen Holland, and Richard Newcombe. A modelling framework for functional imagination. In AISB Convention , pp. 51–58, 2008. Michael D. Moffitt and Martha E. Pollack. Optimal rectangle packing: A meta- CSP approach. In ICAPS, pp. 93-102. AAAI, 2006 Michael Beetz. Concurrent Reactive Plans: Anticipating and Forestalling Execution Failures. Springer-Verlag, Berlin, Heidelberg, 2000. Vere, S. A. Planning in Time: Windows and Durations for Activities and Goals. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI- 5(3): 246-247, 1983. 32

Recommend


More recommend