printing functional materials
play

Printing Functional Materials Jennifer A. Lewis School of - PowerPoint PPT Presentation

Polymer inks ! Printing Functional Materials Jennifer A. Lewis School of Engineering and Applied Sciences Wyss Institute for Biologically Inspired Engineering Harvard University NSF Additive Manufacturing Workshop 07.11.13


  1. Polymer inks ! Printing Functional Materials Jennifer A. Lewis School of Engineering and Applied Sciences Wyss Institute for Biologically Inspired Engineering Harvard University NSF Additive Manufacturing Workshop – 07.11.13 http://lewisgroup.seas harvard.edu ! !

  2. 3D Printing – Design, Print, Innovate Broad range of commercial printers and solidification schemes (photocuring, ! T, laser sintering, drying, etc.) Stereolithography Fused Deposition PolyJet Process Laser Sintering 3D Systems Stratasys Objet 3D Systems Laser Net Shaping 3D Printing Robocasting Electron Beam Melting Optomec Z Corp Robocasting Enterprises Arcam

  3. 3D Printing – Design, Print, Innovate Broad range of commercial printers and solidification schemes (photocuring, ! T, laser sintering, drying, etc.) Stereolithography Fused Deposition PolyJet Process Laser Sintering 3D Systems Stratasys Objet 3D Systems !!!!!!!!!!!!"#$%!&'!()*+%*+,!-.%/#0$!1234!#+.!#)!-#).!#5!%/.! !5#11#6*+,!2%%)*78%.$9! :;< " !"2%.)*21$!=.>*7*1*%?! :@< " !A7*1*%?!%#!(2%%.)+!B+.!5.2%8).$!:C!;DD! µ -< !! :&< " !E*,/!%/)#8,/(8%! Laser Net Shaping 3D Printing Robocasting Electron Beam Melting Optomec Z Corp Robocasting Enterprises Arcam !

  4. Several advances needed for 3D printing of high performance, functional materials ! FG.5#).!%/*$!(.)$#+21!-2+8523%8)*+,!).H#18%*#+!32+!%24.!(123.I!%/#8,/I!).$.2)3/.)$!6*11! +..0!%#!0.H.1#(!2!7)#20.)!2))2?!#5!)#78$%!()*+%*+,!-2%.)*21$JK!!! ! FJ!)2(*01?!,)#6*+,!-2)4.%I!L;!G!$21.$J!!! 27#8%!MDN!#5!-2)4.%!*$!()#%#%?(*+,K! ! O/.-*321!P!Q+,*+..)*+,!R.6$I!R#H!;SI!@D;;!*$$8.!

  5. Our research focus ¡ Ø Broaden materials palette for 3DP Ø Integration of multiple materials Ø Digitally specify form and function Ø Improve feature resolution by 100x Ø Improve throughput by 100x … ¡expedite ¡transformation ¡from ¡rapid ¡prototyping ¡ ¡ to ¡manufacturing ¡of ¡functional ¡materials ¡

  6. Custom stages designed for 3D printing Moderate Area, High Precision ! Large Area, High Speed Stage ! 10x10x5 cm 3 ± 50 nm ! 1m 2 x10 cm ± 5 µ m ! ! ! V = 0.1 -10 mm/s ! ! ! ! V = 1 -1000 mm/s !! E*,/!().3*$*#+I!12),.!2).2I!! 2+0!/*,/!$(..0!$%2,.$! T!*+%.,)2%*+,!-81%*(1.!&'!()*+%/.20$! .U,UI!V'"! !

  7. Printing ink filaments (in and out of plane) Ink filament printing ! ! continuous filament ! is extruded through ! deposition nozzle ! &D!-*3)#+!+#]]1.! Desired Ink Rheology: W*$3#$*%?I! ! !! :X2!$< ! $#1*0[1*4.! "#081* ! :X2< ! • " Shear thinning behavior facilitates $/.2)! flow through fine nozzles without %/*++*+,! =8*0!! clogging " ! ! R.6%#+*2+! " " ! • " Viscoelastic behavior enables Y/.2)!Z2%.!:$ [; < ! Y/.2)!Y%).$$ ! :X2< ! printing of self-supporting (spanning) features \+271.!%#!).%2*+! V*12-.+%2)?!()*+%*+,! B12-.+%2)?!$/2(.!

  8. Viscoelastic inks designed for 3D printing Ink design and deposition • ink must flow through nozzle without jamming • ink filaments must form high integrity interfaces • ink must solidify rapidly (via gelation, coagulation, or evaporation) • concentrated inks minimize shrinkage during drying colloidal inks ! fugitive inks ! nanoparticle inks ! polyelectrolyte inks ! sol-gel inks ! /01* µ 2* /01*(2* !"#$"%&'()*+"%,-$"*&'."*

  9. Reactive silver inks for integrated electronics ^214.)I!_.6*$! #$%& !:@D;@<`!X2%.+%!!B1.0! a!bDN!7814!3#+083%*H*%?!2%!;DDcO !!!

  10. Silver particle inks for integrated electronics @D!+-!2H.)2,.!I!d!e!dD!+-!0*$%)*78%*#+! A/+I!'8#$$I!R8]]#I!Z#,.)$I!_.6*$I!.%!21UI! &'()*') !:@DDb<`!A/+I!'8#$$I!2+0!_.6*$I!\Y[X2%.+%!MIb@@Ib&b!!

  11. Silver particle inks for printed electronics ! Silver inks are highly conductive as-printed A/+I!'8#$$I!R8]]#I!Z#,.)$I!_.6*$I!.%!21UI! &'()*') !:@DDb<`!A/+I!'8#$$I!2+0!_.6*$I!\Y[X2%.+%!MIb@@Ib&b!! Z8$$#!.%!21UI!A0H2+3.0!"2%.)*21$!:@D;;<!

  12. Solar panels - present design 100 µ m interconnects 78$72)$! fK!XW!3.11! Rigid, costly, active materials* occupy large area *silicon PV cells and silver interconnects

  13. Printing High Aspect Ratio Silver Microelectrodes ! 1 µ m nozzle 5 µ m nozzle 10 µ m nozzle 5 µ m nozzle 30 µ m nozzle 5 µ m nozzle 10 µ m nozzle 10 µ m nozzle 30 µ m nozzle A/+I!'8#$$I!R8]]#I!Z#,.)$I!_.6*$!.%!21U! &'()*')! :@DDb<U! !A/+I!'8#$$I!2+0!_.6*$I!\Y[X2%.+%!MIb@@Ib&b!!

  14. Flexible photovoltaics Q>2-(1.9! Y*!-*3)#3.11$!T! _8-*+.$3.+%!12?.)! :\W[38)271.!2+0!#),2+*3!0?.<!!!! ! W2$%!).083%*#+!*+!23%*H.!-2%.)*21$!8$.0! ! X)*+%271.!-*3)#3.11$!P!*+%.)3#++.3%$! 3#-7*+.0!6*%/!3#+3.+%)2%#)!#(%*3$!!! Z#,.)$I!R8]]#I.%!21I! +,-./)!%0112! :@D;;<U!

  15. Printing interconnects and bus bars 610 µ m nozzle f;D! µ -!! +#]]1.! G8$!72)$! g+%.)3#++.3%$! 30 µ m nozzle g+X!3.11$! &D! µ -!! +#]]1.! 10 cmx10 cm g+%.)3#++.3%$! Sparse array of PV cells; finer interconnects ! g+!3#1127#)2%*#+!6*%/!Y.-()*8$!2+0!YAgO!

  16. Flexible concentrator photovoltaics " ink ~1x10 -5 # •cm (after 30 min @ 175°C) Sheet resistance = 30 m # /sq 6” polyimide substrate Printed interconnects are highly flexible and can withstand repeated bending (1000’s cycles) without performance loss Printed interconnects exhibit excellent I-V response g+!3#1127#)2%*#+!6*%/!Y.-()*8$!2+0!YAgO!

  17. Conformal printing of electrically small antennas 3#((.)[7234.0!$87$%)2%.! h[2)-!2+%.++2! 3#+083%*H.!.(#>?! $*1H.)! Q1.3%)#0.$! :;DD! µ -<! ,12$$!! Y8((#)%! 5..0!(#*+%! @dUh!--!0*2-.%.)! 8, !i!DUS;!! 8, !C!DUd!*+0*32%.$!2+! 6*%/!G.)+/2)0!,)#8(!:QOQ!j!g11*+#*$<! 2 " k .1.3%)*3211?!$-211! = ! 2+%.++2!:QYA<! 0 !*U.UI! ,!9! " o :;< !! A02-$I!'8#$$I!"214#6$4*I!A/+I!R8]]#I!G.)+/2)0I!_.6*$I! $34,*')3!5,-)/(,67! :@D;;<!

  18. Performance characteristics G^!k!;SU&N! Z.$#+2+%!2%! k;UM!lE]! O#+32H.!2+%.++2! Qm3*.+3?!kM;N! VSWR: a measure of signal reflected at component junctions Ideally, VSWR = 1 (no reflected power, no mismatch loss) A02-$I!'8#$$I!"214#6$4*I!A/+I!R8]]#I!G.)+/2)0I!_.6*$I! $34,*')3!5,-)/(,67! :@D;;<!

  19. Embedded Electronics (carbon ink printed in polymer matrix) ! SDD!n-! +#]]1.! A$!()*+%.0! A5%.)!.+32($812%*#+! @DD!n-!! DN!$%).%3/! +#]]1.! !!!!"8%/!!!!!!!!!! &DDN!$%).%3/! o#1.$4?!!!!!!!!!!!!! 6*%/!%/.!^##0!,)#8(!

  20. Embedded Electronics (carbon ink printed in polymer matrix) ¡ Strain ¡Gage ¡ Length ¡= ¡20 ¡mm ¡ ¡ All ¡printed ¡ sequentially ¡in ¡ 1mm ¡thick ¡ EcoFlex ¡reservoir ¡ with ¡the ¡Wood ¡group ¡

  21. 3D Printed of Strain Gage Arrays 6*%/!%/.!^##0!,)#8(!

  22. Printed Three-Layer Stretchable Sensors 6*%/!%/.!^##0!,)#8(!

  23. Aim: Print Microbatteries w/ High Power & Energy Density For autonomous devices that: Energy ! Emission ! 1. Harvest energy Control ! - photovoltaic - thermoelectric - piezoelectric ! 2. Store energy Energy ! - micro-batteries w/ high energy Storage ! and power density Energy ! Harvesting ! 3. Perform function - Mechanical - Sensing - RF !0.H*3.! r8)!,#219! X)*+%!;!-- & !! &'!-*3)#72%%.)*.$! X ! *U.UI!$*].!#5!2!$*+,1.! !72%%.)?! ,)2*+!#5!$2+0!:s<! Lai et al., Adv. Mater. 2010 ! Warneke et al., Computer 2001 !

  24. Key Factors Influencing Power & Energy Density ;U " "2%.)*21$!'.$*,+! t " E*,/!#8%(8%!H#1%2,.!%/)#8,/!0.$*,+! #5!%/.!%6#!/215!.1.3%)#0.!).23%*#+$! t " E*,/!*#+!0*u8$*#+!3#.m3*.+%$!:E T I!_* T! *+!/#$%!-2%.)*21$<! t " R.6!1*,/%[6.*,/%!/#$%!-2%.)*21$! t " V2$%!).23%*#+!4*+.%*3$! _*O#r @! _*V.Xr S! _*"+ @ r S! ! @U " Y%)83%8).!'.$*,+! O/.-*321!Y#3*.%?!Z.H*.6$I!! t " &'!.1.3%)#0.!2)3/*%.3%8).! @DDbI!&hI!@@f! t " _2),.!$8)523.!2).2 ! t " v/*+!B1-!#5!23%*H.!-2%.)*21$! !!ZQ'\OQ!vZARYXrZv!_QRlvEY! r8)!V#38$9!!! &'!*+%.)0*,*%2%.0!! -*3)#72%%.)*.$! A/+! ^.*!

  25. Printing 3D Interdigitated Microbatteries ! a) b) Nozzle Current (30 µ m) ! collector (Au) ! LTO ! Glass ! c) d) Packaging ! LTO ! LFP ! oU!Y8+I!_.6*$I!'*11#+!.%!21I! $342!5,-)/2 !@D;&!

  26. Ink Viscosity and Elastic Modulus ¡ LFP ¡ink ¡(cathode) ¡ Ink ¡rheology ¡tailored ¡for ¡3D ¡filamentary ¡printing ¡ LTO ¡ink ¡(anode) ¡ K. ¡Sun, ¡Lewis, ¡Dillon ¡et ¡al, ¡ Adv. ¡Mater. ¡2013 ¡

  27. Printing High Aspect Ratio Structures ! ;!--! Y2+0!,)2*+$! [!!.23/!-*3)#72%%.)?!.p8*H21.+%!*+!$*].!%#!2!$*+,1.!,)2*+!#5!$2+0!

  28. Printed 3D Interdigitated Microbattery ¡ 200 µ m 300 µ m K. ¡Sun, ¡Lewis, ¡Dillon ¡et ¡al, ¡ Adv. ¡Mater. ¡2013 ¡

  29. Printed and Packaged 3D Microbattery ¡ 200 µ m K. ¡Sun, ¡Lewis, ¡Dillon ¡et ¡al, ¡ Adv. ¡Mater. ¡2013 ¡

  30. LFP-LTO Full Cell Properties ¡ K. ¡Sun, ¡Lewis, ¡Dillon ¡et ¡al, ¡ Adv. ¡Mater. ¡2013 ¡

  31. Z.5!&S9!O/*2+,!:"gv<!! Microbattery Performance ! &'[g"A!:_.6*$I!'*11#+<! Z.5!&M9!G)28+I!o*+,!:\g\O<!! 2).21!0.+$*%*.$!w!; $% !,.+!()*+%.0!72%%.)*.$!.>/*7*%!.>3.(%*#+21!(.)5#)-2+3.s!

  32. High throughput 3D printing 5 mm @'! 3;! <;! Multinozzle design based on Murray’s law: 1 mm 3 " 3 r parent r = branch _ generation Hierarchical branching network 200 μ m Created by CNC milling All 64 nozzles are 205±3 µm on a side !

Recommend


More recommend