predictions for higgs signal and background processes
play

Predictions for Higgs signal and background processes with - PowerPoint PPT Presentation

Predictions for Higgs signal and background processes with many-particle final states at the LHC Stefan Dittmaier MPI Munich PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with


  1. Predictions for Higgs signal and background processes with many-particle final states at the LHC Stefan Dittmaier MPI Munich PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC – 1

  2. Contents 1 Introduction 2 The decays Higgs → WW/ZZ → 4 fermions 3 Higgs production via weak vector-boson fusion 4 Background processes with multi-particle final states 5 Technical issues in “NLO multi-leg calculations” 6 Conclusions PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC – 2

  3. 1 Introduction Experiments at LEP/SLC/Tevatron • confirmation of Standard Model as quantum field theory (quantum corrections significant) • top mass m t indirectly constrained by quantum corrections ↔ in agreement with m t measurement of Tevatron • Higgs mass M H indirectly constrained by quantum corrections ֒ → impact on Higgs searches m Limit = 144 GeV 6 Theory uncertainty ∆α had = ∆α (5) Great success of precision physics 5 0.02758 ± 0.00035 0.02749 ± 0.00012 – M H > 114 . 4 GeV incl. low Q 2 data (LEPHIGGS ’02) 4 e + e − − / → ZH at LEP2 ∆χ 2 3 – M H < 144 GeV (LEPEWWG ’07) 2 fit to precision data 1 i.e. via quantum corrections Excluded Preliminary 0 30 100 300 m H [ GeV ] PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC – 3

  4. Higgs search at present and future colliders Higgs bosons couple proportional to particle masses: W , Z ¯ f ∝ m f ∝ M W H H f W , Z ⇒ Higgs production mainly via coupling to W/Z bosons or top quarks PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC – 4

  5. Higgs search at present and future colliders Higgs bosons couple proportional to particle masses: W , Z ¯ f ∝ m f ∝ M W H H f W , Z ⇒ Higgs production mainly via coupling to W/Z bosons or top quarks Processes at hadron colliders ( p¯ p / pp ): q t H t t W , Z t H H H W , Z t W , Z t ¯ W , Z t q PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC – 4

  6. Higgs search at present and future colliders Higgs bosons couple proportional to particle masses: W , Z ¯ f ∝ m f ∝ M W H H f W , Z ⇒ Higgs production mainly via coupling to W/Z bosons or top quarks Processes at hadron colliders ( p¯ p / pp ): q t H t t W , Z t H H H W , Z t W , Z t ¯ W , Z t q Processes at e + e − colliders: t ν e ¯ e + e + e + H W H H Z γ, Z W Z ¯ t e − e − e − ν e PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC – 4

  7. Cross sections and significance of the Higgs signal at the LHC Spira et al. ’98 ATLAS ’03 Signal significance H → γ γ σ (pp → H+X) [ pb ] ∫ L dt = 30 fb -1 ttH (H → bb) 10 2 √ s = 14 TeV H → ZZ (*) → 4 l (no K-factors) H → WW (*) → l ν l ν ATLAS M t = 175 GeV gg → H 10 2 qqH → qq WW (*) 10 CTEQ4M qqH → qq ττ Total significance 1 qq → Hqq _ ’ → HW -1 qq 10 -2 10 10 _ → Htt _ gg,qq -3 10 _ → Hbb _ favoured _ → HZ gg,qq qq -4 10 0 200 400 600 800 1000 1 M H [ GeV ] 100 120 140 160 180 200 m H (GeV/c 2 ) Typical size perturbative corrections at next-to-leading order (NLO): QCD: O ( α s ) ∼ 10 − 100% Electroweak: O ( α ) ∼ 10% ֒ → calculate / control higher orders to reduce theoretical uncertainty down to the level of PDF ( q ¯ q ∼ 5% , gg ∼ 10% ) and experimental uncertainties Complication: many channels involve multi-particle final states. PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC – 5

  8. 1000 1 � b b W W �( H ) [GeV℄ Z Z 100 � t t 2 The decays Higgs → WW/ZZ → 4 fermions 0.1 � � g g 10 Hdecay Hdecay � 1 0.01 BR( H ) 0.1 � � 0.001 s � s 0.01 �� Z � 0.0001 0.001 100 130 160 200 300 500 700 1000 100 130 160 200 300 500 700 1000 M [GeV℄ M [GeV℄ H H Importance of decays H → WW ( ∗ ) / ZZ ( ∗ ) at the LHC: – most important Higgs decay channels for M H > ∼ 125 GeV – most precise determination of M H via H → ZZ → 4 l for M H > ∼ 130 GeV PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC – 6

  9. Theoretical description of H → WW ( ∗ ) / ZZ ( ∗ ) : • previous work on partial decay widths not sufficient: ⋄ O ( α ) corrections to H → WW / ZZ with stable W’s/Z’s Fleischer, Jegerlehner ’81; Kniehl ’91; Bardin, Vilenskii, Khristova ’91 ⋄ lowest-order predictions for H → WW ( ∗ ) / ZZ ( ∗ ) e.g. by Hdecay (Djouadi, Kalinowski, Spira ’98) • however: proper description of distributions required ⋄ for the kinematical reconstruction of Z’s, W’s, and H ֒ → invariant-mass distributions ⋄ for the verification of spin 0 and CP parity of the Higgs boson Nelson ’88; Soni, Xu ’93; Chang et al.’93; ֒ → angular and invariant-mass distributions Skjold, Osland ’93; Barger et al.’93; Arens, Sehgal ’94; Buszello et al.’02; Choi et al.’03 Recent progress: • PROPHECY4 F : Monte Carlo generator for H → WW / ZZ → 4 f with EW and QCD corrections Bredenstein, Denner, S.D., Weber ’06 • combination of production and decay: Anastasiou et al. ’07,’08; ( gg → H in NNLO QCD ) ⊗ (H → WW / ZZ → 4 l in LO ) Frederix, Grazzini ’08; Grazzini ’08 PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC – 7

  10. Survey of Feynman diagrams for NLO EW and QCD corrections to H → 4 f f ❵ V f Lowest order: H f V f ❵ Typical one-loop diagrams: # diagrams = O (200 − 400) f f f pentagons boxes f V f f f V V f V f V V H H H f S f f V V f f V f f f f f f f V vertices self-energies V V f S f f V f V V V S f f V f V f H f f H f V H H V V V V f f f f + photon / gluon bremsstrahlung PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC – 8

  11. Features of PROPHECY4 F : Bredenstein, Denner, S.D., Weber ’06 • O ( α ) and O ( α s ) corrections to all channels H → WW / ZZ → 4 f • final-state radiation off leptons beyond O ( α ) via structure functions • leading 2-loop heavy-Higgs effects ∝ G 2 µ M 4 H Ghinculov ’95; Frink, Kniehl, Kreimer, Riesselmann ’96 • multi-channel Monte Carlo integration (checked by VEGAS ) Berends, Kleiss, Pittau ’94; Kleiss, Pittau ’94 • improved Born approximation for simplified evaluation Main complications in the loop calculation: • numerical instabilities in Passarino–Veltman reduction of tensor integrals ֒ → new reduction methods developed Denner, S.D. ’02,’05 • gauge-invariant treatment of W and Z resonances ֒ → “complex-mass scheme” Denner, S.D., Roth, Wieders ’05 New concepts already used in O ( α ) correction to e + e − → 4 f Denner, S.D., Roth, Wieders ’05 PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC – 9

  12. The complex-mass scheme for unstable particles Problem of unstable particles: description of resonances requires resummation of propagator corrections ֒ → mixing of perturbative orders potentially violates gauge invariance Dyson series and propagator poles (scalar example) = + + + . . . i i i i G φφ ( p ) p 2 − m 2 iΣ( p 2 ) = p 2 − m 2 + p 2 − m 2 + . . . = p 2 − m 2 + Σ( p 2 ) Σ( p 2 ) = renormalized self-energy, m = ren. mass Im { Σ( p 2 ) } = 0 at p 2 ∼ m 2 stable particle: → propagator pole for real value of p 2 , ֒ Σ( m 2 ) = 0 renormalization condition for physical mass m : Im { Σ( p 2 ) } � = 0 at p 2 ∼ m 2 unstable particle: → location µ 2 of propagator pole is complex, ֒ µ 2 = M 2 − i M Γ possible definition of mass M and width Γ : PSI Villigen, March 3, 2008 Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC – 10

Recommend


More recommend