polyatomic gases
play

Polyatomic Gases Non-interacting, identical Z = 1 Z N Find Z 1 1 N - PowerPoint PPT Presentation

Polyatomic Gases Non-interacting, identical Z = 1 Z N Find Z 1 1 N ! Each molecule has # atoms 3# position coordi- nates 3# = + 3 n r + (3# 3 n r ) C.M. rotation n v , vibration


  1. Polyatomic Gases Non-interacting, identical ⇒ Z = 1 Z N Find Z 1 1 N ! Each molecule has # atoms ⇒ 3# position coordi- nates 3# = ���� + 3 n r + (3# − 3 − n r ) ���� � �� � C.M. rotation n v , vibration 8.044 L 1 4B1

  2. MONATOMIC DIATOMIC LINEAR TRI. NON-LINEAR TRI. Xe HS CO 2 H 2 O 3 3 3 3 0 2 2 3 0 1 4 3 3 6 9 9 8.044 L14B2

  3. C.M. Motion: Particle in a box ∆ E s ≪ kT ⇒ classical Rotation: 12 (H 2 ν rot = 3 65 × 10 . Hz → 175 K ) ⇒ Q.M. Vibration: 14 (H 2 ν vib = 1 32 × 10 . Hz → 6 , 320 K ) ⇒ Q.M. H = H CM + H vib + H rot ⇒ problem separates 8.044 L 1 4B3

  4. Vibration n   v 1 1 K i ˙ 2 2 H vib = � K i a i + a i   2 2 2 ω i i =1 n v 1 dimensional harmonic oscillators, use Q.M. ǫ n = ( n + 1 )¯ ˆ H ψ n = ǫ n ψ n hω n = 0 1 , 2 , , · · · 2 The energy levels are non-degenerate. 8.044 L 1 4B4

  5. 1 hω/kT ∞ − ( n + )¯ ǫ /kT e − n � p n ) = e ( / 2 ε n =0 h ω n ∞ ∞ − ( n + 1 1 � � )¯ ¯ hω/k T e − hω/kT − hω ¯ /kT � � e = e 2 2 n =0 n =0 7 h ω 1 2 5 h ω − 1 1 � � ¯ hω/kT ¯ − hω/kT 2 = / 1 − e e 2 3 2 h ω 1 1 2 h ω 1 n � � � � e − hω/kT ¯ ¯ hω /kT = (1 − b ) n e − p ( n ) = 1 − b 8.044 L 1 4B5

  6. Geometric or Bose-Einstein p(n) n b 1 < n > = = e hω/kT − 1 ¯ 1 − b → e − ¯ hω/kT when kT ≪ ¯ hω 8.044 L 1 4B6

  7. 1 For kT ≫ ¯ hω < n > → 2 hω + 1 � � 1 + ¯ ¯ hω · · · − 1 2 kT kT kT 1 kT � ¯ hω � �� − 1 = ¯ 1 ≈ 2 � � hω 1 + 1 ¯ hω ¯ hω kT 2 kT kT hω − 1 = ¯ 2 < ǫ > = ( < n > + 1 2 )¯ kT ≫ ¯ hω (Classical) hω → kT 1 ¯ ≪ ¯ hω (Ground state) hω kT → 2 8.044 L 1 4B7

  8. <n> < ε > 3 2 kT 1 1 h ω 2 0 T 1 2 3 kT/h ω -1 8.044 L14B8

  9. � ∂ < ǫ > d < n > � C V = N = N ¯ hω ∂T dT V � 2 ¯ e hω/kT � ¯ hω = Nk � ¯ � 2 hω/kT − 1 kT e � 2 � ¯ hω e − ¯ hω/kT → Nk kT ≪ ¯ hω ( energy gap behavior ) kT → Nk kT ≫ ¯ hω 8.044 L 1 4B9a

  10. C V /Nk 1 ENERGY GAP BEHAVIOR 2 LEVEL SYSTEM SHOWING SATURATION 1 2 3 kT/h ω 8.044 L14B9b

  11. High and low temperature behavior without solving the complete problem Consider first the high T limit. e - ε /kT ∆ ǫ contains ∆ ǫ hω states ¯ kT ε h ω ∞ e − ǫ n /k T � Z 1 = n =0 � ∞ 1 ∞ e − y kT kT � E/kT hω ∝ β − 1 − e dE = dy = ≈ 0 hω 0 ¯ hω ¯ ¯ 8.044 L 1 4B10

  12. Z vib = Z 1 ∝ β − N N   1 ∂Z = − N N 1 β − − U vib = − ( − N ) = NkT β   Z ∂β N C vib = Nk Next, consider the low T limit. e - ε /kT ⇒ consider only 2 states kT 1 3 ε h ω 2 h ω 2 8.044 L 1 4B11

  13. − 3 ¯ hω/kT e 1 2 ¯ hω/kT − p ( n = 1) ≈ = e ≈ e hω/kT + 1 1 3 ¯ ¯ hω/kT ¯ hω/kT e − 2 + e − 2 p ( n = 0) ≈ 1 − e − ¯ hω/kT � � − ¯ hω /k T ¯ hω /kT hωe − 1 + 3 < E > = 2 N ¯ hω 1 e 2 N ¯ − ¯ hω/kT hωe − = 1 2 N ¯ hω + N ¯ � ¯ 2 ∂ < E > hω � ¯ hω � � hω/kT = Nk − ¯ e − ¯ hω/kT C V = = N ¯ hω e 2 ∂T kT kT 8.044 L 1 4B12

  14. Angular Momentum in 3 Dimensions , L ); ( | � CLASSICAL, 3 numbers: ( L x , L L | , θ, φ ) y z QUANTUM, 2 numbers: magnitude and 1 component ˆ ˆ L ψ l,m ≡ ˆ 2 L · � � L 2 ψ l,m = l ( l + 1)¯ = 0 1 , 2 · · · h ψ l,m l , ˆ z ψ l,m = m ¯ m = l, l − 1 , · · · − l L h ψ l,m � �� � 2 l +1 values 8.044 L 14 B1 3

  15. Specification: 2 numbers l & m → or | l, m > ψ l,m Molecular rotation In general 3 = 0 I 1 1 1 2 2 2 H rot = L 1 + L 2 + L 3 ˙ 2 I 1 2 I 2 2 I 3 L 3 = I 3 θ 3 = 0 For a linear molecule 1 1 1 = I 2 I ≡ I ⊥ 2 2 � � H rot = ( L 1 + L 2 ) = L L · 2 I 2 I ⊥ ⊥ 8.044 L 14 B2 14

  16. 1 ˆ 2 ˆ H rot = L 2 I ⊥ ε/ k ˆ H rot | l, m > = ǫ l | l, m > l = 4 20 Θ R 9 ¯ 2 h = l ( l + 1) l, m > | 2 I ⊥ l = 3 12 Θ R 7 ǫ l depends on l only; it is 2 l + 1 fold degenerate. l = 2 6 Θ R 5 ǫ l = k Θ R l ( l + 1) l = 1 2 Θ R 3 0 l = 0 1 ¯ 2 h Θ R ≡ ( rotational temp. ) 2 I ⊥ k 8.044 L 14 B 15

  17. 1 e − l ( +1)Θ R /T l p l, m ) = ( Z R R /T = e − l ( l +1)Θ l + 1) e − l ( +1)Θ l R /T � � Z R = (2 l,m l 2Θ /T 2Θ kβ 1 + 3 e − = 1 + 3 e − For T ≪ Θ Z R R ≈ R R 2Θ R kβ 1 ∂Z 6Θ R k e − 2Θ R /T R k e − < ǫ > = − = 6Θ ≈ − 2Θ R kβ 1 + 3 e Z ∂β 8.044 L 14 B 16

  18. ∂ < ǫ > � 2Θ � R e − 2Θ R /T C V | rot = N = 6Θ R Nk T 2 ∂T � 2 � 2Θ R e − 2Θ R /T = 3 Nk ( energy gap behavior ) T For T ≫ Θ R , convert the sum to an integral. ∞ � l + 1) e − l l ( +1)Θ /T Z (2 R dl R ≈ 0 8.044 L 14 B 17

  19. 2 x ≡ ( l + l )Θ R /T dx = (2 l + 1)Θ R /T dl � ∞ T T 1 − x − 1 Z R ≈ e dx = = β Θ 0 Θ R k Θ R R 1 ∂Z ( − 1)( − 1) Z/β = β − 1 < ǫ > = − = = kT Z ∂β Z ∂ < ǫ > C V | rot = N → Nk ( classical result ) ∂T 8.044 L 14 B 18a

  20. H = H CM + H rot + H vib C V ( T ) = C � V | + C | + C | CM � V rot � V vib �� � �� � �� � all T appears at modest T only at highest T 8.044 L 14 B 19 a

  21. Raman Scattering BEFORE AFTER ε i ε f ν i ν f ∆ε = ε f - ε i = h ( ν i - ν f) FREQUENCY CHANGES IN THE SCATTERED LIGHT CORRESPOND TO ENERGY LEVEL DIFFERENCES IN THE SCATTERER. WHICH ENERGY LEVEL CHANGES OCCUR DEPEND ON SELECTION RULES GOVERNED BY SYMMETRY AND QUANTUM MECHANICS 8.044 L14B20

  22. Example Rotational Raman Scattering Selection rule: ∆ l = ± 2 ∆ ν l = − ( k Θ R /h )[( l + 2)( l + 3) − l ( l + 1)] ↑ = − (4 l + 6)( k Θ R /h ) ⇒ uniform spacing between lines of 4( k Θ R /h ) I l ∝ number of molecules with angular momentum l ↑ ∝ (2 l + 1) e − l ( l +1)Θ R /T 8.044 L 14 B 21

  23. ROTATIONAL RAMAN SPECTRUM OF A DIATOMIC MOLECULE I ( ∆ν ) BOLTZMANN FACTOR LEVEL DEGENERACY 0 ∆ν 4(k Θ R /h) -6(k Θ R /h) 8.044 L14B22

  24. MIT OpenCourseWare http://ocw.mit.edu 8.044 Statistical Physics I Spring 2013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Recommend


More recommend