pion condensation in the two flavor chiral quark model at
play

Pion condensation in the twoflavor chiral quark model at finite - PowerPoint PPT Presentation

Pion condensation in the twoflavor chiral quark model at finite baryochemical potential P eter Kov acs KFKI Research Institute of Particle and Nuclear Physics of HAS, Theoretical Department 2009.04.03 Motivation The constituent


  1. Pion condensation in the two–flavor chiral quark model at finite baryochemical potential P´ eter Kov´ acs KFKI Research Institute of Particle and Nuclear Physics of HAS, Theoretical Department 2009.04.03 • Motivation • The constituent quark model and its renormalization • Equations at one–loop level, the OPT • Diagonalized propagators • Parametrization • Results at lowest order in ρ (Phys.Rev.D78:116008,2008.) • Conclusion Collaborator: T. Herpay

  2. 1 Where can pion condensation occur in nature? • Quark matter can exist in neutron stars − → at very large bariochemical potential ( µ B ≈ 1 GeV) If the isospin chemical potential is also different from zero − → possibility of pion condensation • In heavy ion collisions µ I is tunable with different isotopes of an element Neutrino emission from pion condensed quark matter → direct Urca processes: d → u + e − + ¯ ν u + e − → d + ν = ⇒ It might will be investigated experimentaly

  3. 2 In 2 flavoured NJL model ( L. He et al Phys. Rev. D74 , 036005 (2004) ): • if µ I < 140 MeV( = m π ) → no pion condensation • if 140 MeV < µ I < 230 MeV → BEC phase • if µ I > 230 MeV → BCS phase Interesting feature of pion condensation found in SU (2) PNJL model: At sufficiently high temperature the condesate evaporates above a certain µ I . ( e.g. Z. Zhang, Y. Liu: hep-ph/0610221v3 ) Up to now: • Investigations in SU (2) NJL and PNJL model (BEC, BCS and CFL phases) • Investigation in O (4) model in the large N limit (leading order) (BEC phase)

  4. 3 The model and its renormalization Our starting point is the renormalized SU (2) L × SU (2) R symmetric Lagrangian with explicit symmetry breaking term 1 − λ ψγ µ ∂ µ ψ − g F 4 φ 4 + hφ 0 + i ¯ ¯ ∂ µ φ∂ µ φ − m 2 φ 2 � � L = ψT i φ i ψ 2 2 1 − δλ δZ∂ µ φ∂ µ φ − δm 2 φ 2 � 4 φ 4 � + 2 ψ = ( u, d ) T − → doublet quark fileds φ = ( φ 0 , φ 1 , φ 2 , φ 3 ) ≡ ( σ, π 1 , π 2 , π 3 ) − → sigma and pion scalar fields h − → symmetry breaking external field T i = ( τ 0 , iτ i γ 5 ) − → quark–boson coupling matrix The renormalized (finite) parameters of the Lagrangian: m 2 , λ, g F δz, δm 2 , δλ are the usual (infinite) counterterms (Fermions are treated at tree level → no wavefunction renormalization)

  5. The genarating functional: 4 � − i β � � � � D φ D Π D ¯ d 3 x (Π ˙ φ + i ¯ ψγ 0 ˙ Z = ψ D ψ exp i dt ψ − H + µ B Q B + µ I Q I ) , 0 where the Hamiltonian is 1 + λ ψγ i ∂ i ψ + g F Π 2 + ( ∇ φ ) 2 + m 2 φ 2 � 4 φ 4 − hφ 0 + i ¯ ¯ � H = ψT α φ α ψ 2 2 1 2 δZ Π 2 + 1 2 δZ ( ∇ φ ) 2 + δλ 4 φ 4 + 1 2 δm 2 φ 2 , − ( i = 1 , 2 , 3) and the canonical momenta of the scalar fields Π = δ L = (1 + δZ ) ˙ φ. δ ˙ φ Q B , Q I are the conserved barion and isospin charges � d 3 x 1 3( u † u + d † d ) Q B = � �� � π 2 ) + 1 d 3 x u † u − d † d � Q I = (1 + δZ )( π 2 ˙ π 1 − π 1 ˙ . 2

  6. 5 Symmetry breaking: At small T when either h � = 0 or h = 0 and m 2 < 0 ⇒ � φ 0 � ≡ � σ � ≡ v � = 0 At large µ I ⇒ � φ 1 � ≡ � π 1 � ≡ ρ � = 0 and � φ i � ≡ � π i � = 0 for i = 2 , 3 Shifting the corresponding fields R − i β R − i β R − i β ψGf − 1 ψ e − i Z » Z – d 3 x ¯ d 3 x ˜ d 3 x (Π ˙ φ − ˜ R R R D φ D ¯ e − dt dt L I D Πe i dt H B ) Z = ψ D ψ . 0 0 0 where the Π dependent part of Π ˙ φ − ˜ H B : 1 � � Π ˙ φ − ˜ 0 − 2Π 0 (1 + δZ ) ˙ Π 2 H B = − 2(1 − δZ ) φ 0 1 � � 3 − 2Π 3 (1 + δZ ) ˙ Π 2 − 2(1 − δZ ) φ 3 1 � � 1 − 2Π 1 (1 + δZ )( ˙ Π 2 − 2(1 − δZ ) φ 1 − µ I φ 2 ) 1 � � 2 − 2Π 2 (1 + δZ )( ˙ Π 2 − 2(1 − δZ ) φ 2 + µ I ( φ 1 + ρ )) .

  7. 6 Making whole squares in the above brakets Then performing the Π integration → produce the inverse bosonic propagators and the tree-level EoS (linear terms). Propagator matirices: gF gF „ ( − i ω n + 1 3 µ B + 1 − 1 = « 2 µ I ) γ 0 − γ i p i − 2 v − i 2 γ 5 ρ i G f , gF gF ( − i ω n + 1 3 µ B − 1 ij − i 2 γ 5 ρ 2 µ I ) γ 0 − γ i p i − 2 v − 1 = ( − i ω n ) 2 − E 2 i G b π 3 , 44 √ ( − i ω n − µ I ) 2 − E 2 π 3 − λρ 2 − λρ 2 0 1 − 2 λvρ √ − 1 = ( − i ω n + µ I ) 2 − E 2 i G b − λρ 2 π 3 − λρ 2 − 2 λvρ B C kl √ √ @ A ( − i ω n ) 2 − E 2 π 3 − 2 λv 2 − 2 λvρ − 2 λvρ Tree-level EoS: v ( m 2 + λ ( v 2 + ρ 2 )) − h = 0 , EoS tree = σ ρ ( m 2 + λ ( v 2 + ρ 2 ) − µ 2 EoS tree = I (1 + δZ )) = 0 . π 1

  8. 7 Renormalizaiton conditions → finiteness of the perturbative N –point functions (the propagator and the four point boson vertex) Practically it is easier to obtain the counterterms from the one–loop EoS Note: there is some arbitrariness in choosing the finite parts With cut-off regularization: − 6 λ (Λ 2 − m 2 ln Λ 2 ) + g 2 δm 2 4 π 2 N c Λ 2 , F = l 2 b 12 λ 2 ln Λ 2 − g 2 32 π 2 N c ln Λ 2 F δλ = , l 2 e l 2 b f 16 π 2 ln Λ 2 g 2 F δZ = − N c , e 2 l 2 f l b , l f → bosonic and fermionic renormalization scales

  9. 8 Equations at one–loop level, the OPT At finite temperature tree level mass squares can become negative → some sort of resummation is needed Using the optimized perturbation theory (OPT): • a temperature dependent mass term introduced in the Lagrangian • the difference is treated as a higher order counterterm • the new mass parameter determined by the FAC criterion ( m 1–loop = m tree ) → can be transformed to an equation for a resummed particle mass • conserves Ward–identities

  10. 9 Equation for the resummed π 3 mass: π 3 ( T, µ ) = m 2 + δm 2 + ( λ + δλ )( v 2 + ρ 2 ) + Σ π 3 ( ω = p = 0 , m 2 m 2 π 3 , T, µ ) One–loop level EoS for σ : „ Z m 2 + δm 2 + ( λ + δλ )( v 2 + ρ 2 ) + λ X Tr { H b G b ( ω n , p , µ I ) } v p « Z X Tr { H f G f ( ω n , p , µ I , µ B ) } + g F = h p comparing the two equations → a Ward–identity is recognized vm 2 π 3 = h One–loop level EoS for π 1 : „ Z m 2 + δm 2 + ( λ + δλ )( v 2 + ρ 2 ) − µ 2 Tr { R b G b ( ω n , p , µ I ) } X ρ I (1 + δZ ) + λ p « Z X Tr { R f G f ( ω n , p , µ I , µ B ) } + g F = 0 , p

  11. 10 Calculation of the loop integrals requires the diagonalization of the propagators → Straightforward but the eigenvalues are non–rational functions of ω n → diagonalization for small ρ → Landau–type analysis Up to O ( ρ 3 ) π 3 = m 2 + λv 2 + t (0) ( m 2 m 2 π 3 , v, T, µ I , B ) + ( λ + t (2) ( m 2 π 3 , v, T, µ I , B )) ρ 2 Due to the Ward identity the EoS for σ remains vm 2 π 3 = h � I − m 2 − λv 2 − r (0) ( m 2 π 3 , v, T, µ I , B )) ρ 2 + O ( ρ 4 ) � µ 2 π 3 , v, T, µ I , B ) − ( λ + r (2) ( m 2 ρ = 0 ⇒ Pion condensate non–zero only if the roots are real If λ + r (2) > 0 and µ 2 I − m 2 − λv 2 − r (0) > 0 � I − m 2 − λv 2 − r (0) ( m 2 µ 2 π 3 , v, T, µ I , B ) ρ = λ + r (2) ( m 2 π 3 , v, T, µ I , B ) ⇒ The transition is of second order

  12. 11 Diagonalized propagators √ 1 − | a | 2 ρ 2   b (1 − 2 av ) ρ 2 − 2 aρ √ 1 − | a | 2 ρ 2  + O ( ρ 3 ) , b ∗ (1 − 2 a ∗ v ) ρ 2 2 a ∗ ρ O B = −   √ √  1 − 2 | a | 2 ρ 2 2 a ∗ ρ 2 aρ a = a ( ω n , µ ) = λv/ ( µ 2 + 2 λv 2 + 2i ω n µ ) and b = b ( ω n , µ ) = i λ/ (4 µω n ) I + 2 λv 2 − 4i µ I ω n ) λ (2 µ 2 1 i ˜ − ρ 2 I + 2 λv 2 − 2i µ I ω n ) + O ( ρ 4 ) , G π + = ( ω n + i µ I ) 2 + E 2 (( ω n + i µ I ) 2 + E 2 π ) 2 ( µ 2 π I + 2 λv 2 + 4i µ I ω n ) λ (2 µ 2 1 i ˜ − ρ 2 I + 2 λv 2 + 2i µ I ω n ) + O ( ρ 4 ) , G π − = ( ω n − i µ I ) 2 + E 2 (( ω n − i µ I ) 2 + E 2 π ) 2 ( µ 2 π I + 6 λv 2 + 4 µ 2 − ρ 2 λ ( µ 2 I + 2 λv 2 )( µ 2 I ω 2 1 n ) i ˜ n ) + O ( ρ 4 ) , G σ = I + 2 λv 2 ) 2 + 4 µ 2 σ ) 2 (( µ 2 ω 2 n + E 2 ( ω 2 n + E 2 I ω 2 σ while the π 3 propagator is 1 λ − ρ 2 π ) 2 + O ( ρ 4 ) . i G π 3 = ω 2 n + E 2 ( ω 2 n + E 2 π Important to note − → the transformation matrix depends on ρ, ω n , µ

  13. 12 g 2   − i g F 0 ρ 2  1 + F 4 k 0 γ 0 γ 5 ρ 32 k 2  , O F = g 2 − i g F 0 ρ 2 4 k 0 γ 0 γ 5 ρ 1 + F 32 k 2 where k 0 = ( − i ω n + 1 3 µ B ) γ 0 and the matrix is hermitian − ρ 2 g 2 1 1 1 i ˜ F G u/d = − γ 0 p u/d − m f / 8 k 0 p u/d − m f / p u/d − m f / where / p u/d = ( − i ω n + µ u/d ) γ 0 − γ i p i and µ u/d = µ B / 3 ± µ I / 2 . Calculation of one–loop contributions (bosonic case): B b ˜ B ˜ G b } = Tr { ˜ Tr { B b G b } = Tr { B b O − 1 B O B G b O − 1 B O B } = Tr { O B B b O − 1 G b } G b = diag( ˜ where ˜ π + , ˜ π − , ˜ G − 1 G − 1 G − 1 σ )

Recommend


More recommend