pion scattering and electro production on nucleons in the
play

Pion scattering and electro-production on nucleons in the resonance - PowerPoint PPT Presentation

Pion scattering and electro-production on nucleons in the resonance region in chiral quark models B. Golli, U of Ljubljana Mnchen | 16 June 2011 M. Fiolhais, P. Alberto, U of Coimbra S. irca, U of Ljubljana P11: EPJA 38 (2008) 271 P11: EPJA


  1. Pion scattering and electro-production on nucleons in the resonance region in chiral quark models B. Golli, U of Ljubljana München | 16 June 2011 M. Fiolhais, P. Alberto, U of Coimbra S. Širca, U of Ljubljana P11: EPJA 38 (2008) 271 P11: EPJA 42 (2009) 185 S11: EPJA 47 (2011) 61 1

  2. Motivation for study of P 11 and S 11 resonances • Large width of **** P 11 ( 1440 ) “Roper”; existence of *** P 11 ( 1710 ) unclear; difficult to identify directly (in cross-sections) • Atypical behaviour of Im T π N in J = I = 1 / 2 partial wave • Level ordering (parity inversion) of P 11 ( 1440 ) wrt. S 11 ( 1535 ) on Lattice • Many competing explanations of the Roper in models, e.g. q 3 g hybrid ⊲ Li, Burkert PRD 46 (1992) 70 qqqqq admixtures ⊲ Li, Riska PRC 74 (2006) 015202 dynamical generation by N + σ ⊲ Krehl++ PRC 62 (2000) 025207 ⊲ Döring++ NPA 829 (2009) 170 • Two negative-parity resonances: resonance M [MeV] Γ [MeV] decays S11(1535) 1535 150 πN 35–55 % , ηN 45–60 % 2 πN < 10 % , ( πR ) S11(1650) 1655 165 πN 60–95 % , ηN 3–10 % , K Λ 3–11 % 2 πN 10–20 % , ρ 4–12 % , ∆ 1–7 % 2

  3. Present work • A coupled-channels approach that includes many-body states of quarks and mesons in the scattering formalism • Calculate scattering and electro-production amplitudes within the same framework • Investigate whether quark+meson description is sufficient i.e. no exotic degrees of freedom involved • Baryons treated as composite particles � → coupling constants and cut-offs of form-factors computed from the underlying model, not fitted � → smaller number of free parameters • Physical resonances appear as linear combinations of bare resonances • Bare quark-meson and quark-photon vertices are strongly modified by meson loops and mixing of resonances • K -matrix real & symmetric � → S -matrix unitary 3

  4. Reminder: ∆ ( 1232 ) in quark models with pion cloud Helicity and electro-production amplitudes for γ ∗ N → ∆ ( 1232 ) → Nπ A 1 / 2 E 1 + /M 1 + S 1 + /M 1 + • M 1 + is ( ∼ 50 % pion cloud) + ( ∼ 50 % quarks) • E 1 + is ( ∼ 100 % pion cloud) Golli++ PLB 373 (1996) 229 4

  5. Coupled-channel K -matrix formalism Our model Golli, Širca / EPJA 38 (2008) 271 Golli, Širca, Fiolhais / EPJA 42 (2009) 185 The meson field linearly couples to the quark core; no meson self-interaction � � � �� � V lmt (k)a lmt (k) + V lmt (k) † a † ω k a † d k H = H quark + lmt (k)a lmt (k) + lmt (k) lmt V lmt (k) induces also radial excitations of the quark core, e.g. 1 s → 2 s , 1 s → 1 p 1 / 2 , 1 s → 1 p 3 / 2 , . . . transitions For example: V(k) from Cloudy Bag Model 3 � k 2 1 ω s j 1 (kR bag ) V s → s σ i m τ i � (p − wave pions ) 1 mt (k) = t 2 f 12 π 2 ω k ω s − 1 kR bag i = 1 � 3 � k 2 1 j 1 (kR bag ) ω 2s ω s V s → 2 s m τ i � σ i (p − wave ) 1 mt (k) = t 2 f (ω 2s − 1 )(ω s − 1 ) 12 π 2 ω k kR bag i = 1 � 3 � k 2 1 ω p 1 / 2 ω s j 0 (kR bag ) s → p 1 / 2 τ i � (s − wave ) 1 = 0 ,t (k) = V t 2 f (ω p 1 / 2 + 1 )(ω s − 1 ) 4 π 2 ω k kR bag i = 1 � 3 � k 2 1 ω p 3 / 2 ω s j 2 (kR bag ) s → p 3 / 2 Σ i 2 m τ i � (d − wave ) (k) = V 2 mt t 2 f 2 π 2 ω k (ω p 3 / 2 − 2 )(ω s − 1 ) kR bag i = 1 5

  6. Constructing the K -matrix Aim: include many-body states of quarks (and mesons) in the scattering formalism (Chew-Low type approach) Construct the K -matrix in spin-isospin (JI) basis: � ω M E B K JI k M W � Ψ MB M ′ B ′ MB = − π JI (W) || V M ′ (k) || Ψ B ′ � dressed states by using principal-value (PV) states � �� � � JI P ω M E B H − W [V(k M ) | Ψ B � ] JI a † (k M ) | Ψ B � | Ψ MB JI (W) � = − k M W normalized as � Ψ MB (W) | Ψ M ′ B ′ (W ′ ) � = δ(W − W ′ )δ MB,M ′ B ′ ( 1 + K 2 ) MB,MB 6

  7. Ansatz for the channel PV states free meson bare (genuine)  � (defines the channel) baryons (3q)  � ω M E B  [a † (k M ) | � | Ψ MB Ψ B � ] JI c MB JI � = + R | Φ R � k M W R meson “clouds” with amplitudes χ  � d k χ M ′ B ′ MB (k, k M )  � ω k + E B ′ (k) − W [a † (k) | � Ψ B ′ � ] JI +  M ′ B ′ Above the meson-baryon ( MB ) threshold: � � ω M E B ω M ′ E B ′ χ M ′ B ′ MB (k, k M ) K M ′ B ′ MB (k, k M ) = π k M W k M ′ W 2 π decay through intermediate hadrons ( ∆ ( 1232 ) , N( 1440 ) ; σ , ρ , . . . ), e.g. πN → B ∗ → π ∆ → ππN , πN → B ∗ → σN → ( 2 π)N Solve Lippmann-Schwinger eqs for χ ; the solution has the form � χ M ′ B ′ MB (k, k M ) = − R V M ′ B ′ R (k) + D M ′ B ′ MB (k, k M ) c MB R dressed background vertex part 7

  8. Solving the coupled equations The dressed vertices satisfy: � d k ′ K MB M ′ B ′ (k, k ′ ) V M ′ � B ′ R (k ′ ) V M B R (k) = V M B R (k) + ω ′ k + E B ′ (k ′ ) − W M ′ B ′ r MBR = V M B R (k) V M B R (k) Similarly, for the background part of the amplitude: D M ′ B ′ MB (k, k M ) = K M ′ B ′ MB (k, k M ) � d k ′ K M ′ B ′ M ′′ B ′′ (k, k ′ ) D M ′′ B ′′ MB (k ′ , k M ) � + ω ′ k + E B ′′ (k ′ ) − W M ′′ B ′′ The coefficients c MB R ′ of the quasi-bound states satisfy a set of equations: � A RR ′ (W) c MB R ′ (W) = V M B R (k M ) R ′ � d k V M ′ B ′ R (k) V M ′ � B ′ R ′ (k) A RR ′ = (W − M 0 R )δ RR ′ + ω k + E B ′ (k) − W B ′ 8

  9. Calculating the K -matrix To solve the set of equations, diagonalize A to obtain U , along with the poles of the K - matrix, and wave-function normalization Z :   0 0 Z R (W)(W − M R )   UAU T =   0 0 Z R ′ (W)(W − M R ′ )   0 0 Z R ′′ (W)(W − M R ′′ ) As a consequence, Φ R mix: � � 1 � | � � Φ R � = U RR ′ | Φ R � V B R = U RR ′ V B R ′ Z R (W) R ′ R ′ Solution for the K -matrix:   � � V M ′ � � B R � V M ω M E B ω M ′ E B ′ B ′ R  K MB,M ′ B ′ = π (M R − W) + D MB,M ′ B ′ k M W k M ′ W R resonant background Solution for the T matrix: � T MB,M ′ B ′ = K MB,M ′ B ′ + i T MB,M ′′ B ′′ K M ′′ B ′′ ,M ′ B ′ M ′′ K ′′ 9

  10. Pion electro-production: including the γN channel Only the strong T MB,M ′ B ′ appears on the RHS: � T MB,γN = K MB,γN + i T MB,M ′ B ′ K M ′ B ′ ,γN M ′ K ′ � � � � � ω γ E N Ψ M ′ B ′ � V γ � Ψ N K M ′ B ′ ,γN = − π JI k γ W Choosing a resonance, R = N ∗ , the principal-value state can be split into the resonant and background parts. Then � helicity amplitude � � �� � γ � ω γ E 1 ( bkg ) � Ψ ( res ) N ∗ (W) | ˜ N M MB γN = V γ | Ψ N � T MB MB + M MB γN π V BN ∗ ω M E B � �� � M ( res ) MB γN The resonant state takes the form: bare quark contrib meson cloud contrib   � d k   � � V M 1 BN ∗ (k) | Ψ ( res )  | � ω k + E B − W [a † (k) | Ψ B � ] JI � N ∗ (W) � = Φ N ∗ � −  Z N ∗ MB 10

  11. Underlying quark model Cloudy Bag Model extended to pseudo-scalar SU(3) octet � � = − i L ( quark − meson ) a = 1 , 2 , . . . , 8 r − R bag 2 f qγ 5 λ a qφ a δ , CBM Parameters: R bag = 0 . 83 fm f π = 76 MeV f K = 1 . 2 f π or 1 . 2 f π f η = f π Similar results for 0 . 75 fm < R bag < 1 . 0 fm Free parameters: bare masses of the resonant states 11

  12. πN → MB Pion scattering in P11 partial wave Channels : πN , π ∆ , σN , πR (preliminary: ηN , K Λ ) Parameters of the σN -channel: g σNR = 1 , m σ = 450 MeV , Γ σ = 550 MeV Thin lines: only N( 1440 ) included ( ( 1 s) 2 ( 2 s) 1 ) Thick lines : N( 1710 ) added ( ( 1 s) 1 ( 2 p) 2 ) with g πNN( 1710 ) = 0 g σNN( 1710 ) ≈ g σNN( 1440 ) 12

  13. πN → MB Pion scattering in S11 partial wave Allow single-quark excitations (1 s → 1 p 1 / 2 and 1 s → 1 p 3 / 2 ) Φ ( 1535 ) = − sin ϑ s | 4 8 1 / 2 � + cos ϑ s | 2 8 1 / 2 � cos ϑ s | 4 8 1 / 2 � + sin ϑ s | 2 8 1 / 2 � Φ ( 1650 ) = ϑ s is a free parameter ( ≈ − 30 ◦ ) Myhrer, Wroldsen / Z. Phys. C 25 (1984) 281 13

  14. Pion scattering in S11 partial wave Inelastic Channels P11, P13 contributions sizeable S11 contribution dominates P11, P13 negligible not yet included in our calculation PWA results on S11 : P11 : P13 uncertain 14

  15. γp → N( 1440 ) [ 10 − 3 GeV − 1 / 2 ] Helicity amplitudes for 15

  16. γN → Nπ 0 P11 transverse photo-production amplitudes [ 10 − 3 /m π ] [ 10 − 3 /m π ] 16

  17. γp → S 11 ( 1535 ), S 11 ( 1650 ) Helicity amplitudes A 1 / 2 (Q 2 ) [ 10 − 3 GeV − 1 / 2 ] S 1 / 2 (Q 2 ) [ 10 − 3 GeV − 1 / 2 ] 17

  18. γp → pπ 0 S11 transverse amplitudes [ 10 − 3 /m π ] [ 10 − 3 /m π ] 18

  19. Eta, kaon photoproduction work in progress 19

  20. Summary • Using a single set of parameters we reproduce the main features of pion- and photon-induced production of π , η , and K mesons in P11 and S11 partial waves. • Importance of the meson cloud: – it enhances the bare baryon-meson couplings; – it improves the behaviour of the helicity amplitudes at low Q 2 . • Enhancement of couplings stronger for P11 and P33 than in the case of S11 resonances which are dominated by quark-core contributions. 20

  21. Spare slides 21

Recommend


More recommend