Performance evaluation of the detector part for development of a Compton Camera 2019/12/23 Yamanaka Taku lab. Sugiura Seiya Iwata Kazushi 1
Principle first scintillator โข Compton scattering ๐น ๐ฟ / ๐ ๐ (1 โ ๐๐๐ก๐ ) ๐น ฮณ ๐ = ๐น ๐ฟ โ ๐น โฒ ๐น ฮณโฒ = ๐ฟ = ๐น ๐ฟ 1 + ๐น ฮณ / ๐ ๐ (1 โ ๐๐๐ก๐ ) 1 + ๐น ๐ฟ / ๐ ๐ (1 โ ๐๐๐ก๐ ) ๐น๐ฟ , ๐น๐ฟ โฒ ๐ ( : energys of entering or scattered ฮณ-ray : energy of electron ๐ ๐ :mass of electron ๐ : scattered angle of ฮณ-ray 511keV) ๐น ๐ฟ ยด and ๐ โ โ ๐ 2
Performance evaluation ๐ ๐น ฮณโฒ [MeV] [MeV] 1.2 1.0 0.8 1.275MeV 0.8 0.6 0.4 0.662MeV 0.4 0.2 0.356MeV 0 80 120 80 120 40 ฮธ[degree] 40 ฮธ[degree] 3
Principle second scintillator โข Photoelectric effect B.E. :binding energy ๐ โ and ๐น ๐ถ . ๐น . โ โ ๐น ๐ฟ โฒ 4
Principle 5
Performance evaluation Using CsI scintillator(10mmร10mmร10mm) Evaluation โข Angular resolution โข Systematic error โข Needed event rate 6
Angler resolution From Compton equation 2 2 ๐๐น โฒ ๐ (1 โ ๐๐๐ก๐ ) 1 2 2 ( ๐๐ ( 2 ๐น โฒ ๐ฟ + ๐ ) ๐ฟ = ( ) + ๐น โฒ ๐ ) ๐ฟ 1 โ ๐๐๐ก๐ ๐น โฒ ๐ฟ + ๐ ๐น โฒ ๐ฟ also ๐๐ = 1 โ ๐๐๐ก๐ ร ๐ (1 โ ๐๐๐ก๐ ) 1 โ ๐๐๐ก๐ ๐ก๐๐๐ 7
๏ผ ๏ผ ๏ผ๏ผ ๏ผ ๏ผ ๏ผ ๏ผ ๏ผ ๏ผ ๏ผ๏ผ ๏ผ ๏ผ Angler resolution ฮดฮธ[degree] ฮดฮธ[degree] 10 ๏ผ 25 ๏ผ 40 40 30 30 20 20 10 10 ฮธ[degree] ฮธ[degree] 8
Estimate event rates Factors of event rates are โข Compton Scattering and Photoelectric rates โข Length between radioactive source and first detector, and first detector and second detector 9
Estimate event rates The intensity of photon ๐ฝ = ๐ฝ 0 ๐ โ ๐๐ฆ :absorption coefficient [1/cm] ๐ ๐ = ๐๐ = ๐ ( ๐๐ comp + ฮฆ photo + ๐ pair ) ๐ :number density of atom or molucule [1/cm 3 ] :Compton scattering [1/cm 2 ] ๐ comp :photoelectric effect [1/cm 2 ] ฮฆ photo :pair production [1/cm 2 ] ๐ pair :pair production ๐ pair ๐ pair = 0 1.022MeV โก ๐น๐ฟ < 10
Estimate event rates Klein-Nishina formula 2 (1 + ๐๐๐ก 2 ๐ + ๐ 2 (1 โ ๐๐๐ก๐ ) 2 ๐ ฮฉ = ๐ ๐ 2 ๐๐ 1 1 + ๐ (1 โ ๐๐๐ก๐ ) ) 2 [ 1 + ๐ (1 โ ๐๐๐ก๐ ) ] [mb] ๐ comp ๐น ๐ฟ ๐ ๐ = 2.81 ร 10 โ 15 ๐ = 0.002 [m] classical electron radius, ๐ ๐ 0.0016 0.0012 0.0008 0.0004 40 80 120 ฮธ[degree] 11
ใป ใป ใป Estimate event rates In ScI scintillator rate 0.5 0.4 0.3 10mm 0.2 8mm 0.1 2mm 0.2 0.4 0.6 0.8 1.2 1.0 [MeV] ๐น ฮณ 12
Hardware part 13
Detector โข CsI crystal CsI (Tl๏ผ(Reading Edge Algorithms) size:10mmร10mmร10mm โข MPPC S13360-1325CS (HAMAMATSU) photosensitive area :1.3mmร1.3mm pixel pitch : 25um โWe need a detector with MPPC and CsI 14
CsI and MPPC CsI crystal Silicone cookie MPPC โข Need to attach CsI and MPPC 15
BOX CsI &MPPC LEMO โขStack like this top view โข Box is filled silica gel because CsI is weak to humidity โข Use LEMO connector for easily detachable feature 16
CsI and MPPC and BOX CsI and MPPC assembly behind inside the box appearance behind 17
EASIROC MODULE โข NIM EASIROC MODULE โ64 MPPCs can be operated simultaneously Made a Flat cable to LEMO adapter board This module uses Flat cable 18
Set up 19
Future prospect gamma source 1. 2. โข Measure the angular distribution โข Measure the location of gamma source 20
We shall specify the location of source!! conclusion โข Error and the rate were calculated โข we have the necessary equipment 21
Back Up 22
Performance evaluation Prepared sources for test source ฮณ energy Emission prob. Radioactivity Per decay 1.275 MeV 100 % 496.02 kBq Na Cs 0.662 MeV 85% 91.09 kBq Ba 0.356 MeV 62% 716.69 kBq 23
Angler resolution From Compton equation ๐๐ ๐ 1 โ ๐๐๐ก๐ = ( ๐ + ๐น ๐ฟ โฒ ) ๐น ๐ฟ โฒ And error propagation 2 2 ๐๐น โฒ ๐ (1 โ ๐๐๐ก๐ ) 1 2 2 ( ๐๐ ( 2 ๐น โฒ ๐ฟ + ๐ ) ๐ฟ = ( ) + ๐น โฒ ๐ ) ๐ฟ 1 โ ๐๐๐ก๐ ๐น โฒ ๐ฟ + ๐ ๐น โฒ ๐ฟ Also ๐ (1 โ ๐๐๐ก๐ ) = ๐ก๐๐๐๐๐ From the above ๐๐ = 1 โ ๐๐๐ก๐ ร ๐ (1 โ ๐๐๐ก๐ ) 1 โ ๐๐๐ก๐ ๐ก๐๐๐ 24
Estimate event rates ( ๐๐๐๐๐๐๐๐ข๐๐ค๐๐ข๐ง ) ร ๐ 2 ฮฉ ฮฉ 4 ๐๐ 2 25
Estimate event rates Klein-Nishina formula 2 (1 + ๐๐๐ก 2 ๐ + ๐ 2 (1 โ ๐๐๐ก๐ ) 2 ๐ ฮฉ = ๐ ๐ 2 1 ๐๐ 1 + ๐ (1 โ ๐๐๐ก๐ ) ) 2 [ 1 + ๐ (1 โ ๐๐๐ก๐ ) ] ๐ ๐ = 2.81 ร 10 โ 15 [m] classical electron radius, ๐น ๐ฟ ๐ = ๐ ๐ and total cross section is { (1 + 2 ๐ ) 2 } ๐ 2 [ ๐ ln(1 + 2 ๐ ) ] + 1 1 + ๐ 2(1 + ๐ ) 1 + 2 ๐ โ 1 1 + 3 ๐ ๐ ๐ = 2 ๐๐ ๐ 2 2 ๐ ln(1 + 2 ๐ ) โ 26
Estimate event rates Each of the scintillators is in Two boxes are made with Polylactide((C 3 H 4 O 2 ) n ) two boxes Molecular weight 72n [g/mol] thickness 0.2cm ร2 cm 3 density 1.25g/ โก Number density of electron Transmittance ๐ = ๐๐ = 1.25 72 ร (6.02 ร 10 23 ) ร 38 ๐ โ 0.4 ๐๐ ๐ = 3.97 ร 10 23 [1/cm 3 ] 27
Estimate event rates Solid Angle ฮดฮฉ ๐ + ๐๐ /2 โซ ๐๐ป = ๐๐ป 2 ๐๐ก๐๐๐ ๐๐ ๐ โ ๐๐ /2 ๐ = 4 ๐๐ก๐๐๐๐ก๐๐๐๐ ๐ comp = ๐๐ ๐ ฮฉ ๐๐ป 28
Box size 58mm 58mm 58mm 29
CsI and MPPC size 18mm 18mm 18mm 18mm 17mm 3mm 30
Detector Desired detector conditions โI made it using 3D printer. โข Detector needs drying system because CsI has deliquescence. โข Cable length can be adjusted freely. โข Requires CsI and MPPC fixation and alignment 31
EASIROC โข NIM EASIROC MODULE โ MPPC readout ASIC โข The main function -64 MPPCs can be operated simultaneously -The voltage of each channel can be adjusted (0~4.5V) -Module control and DAQ can be performed by a PC via Ethernet 32
Software โข Controller for EASIROC module By rewriting the numerical values in RegisterValue.yml or InputDAC.yml , we can adjust the applied voltage and select the output information Use this to control EASIROC interactively RegisterValue.yml โ(-1) mean donโt use โ(32) mean CH32 33
CsI ๆธ่กฐๆ้ ๅฏๅบฆ ่็น ็กฌๅบฆ ๅฑๆ็ ใใผใฏๆณข้ท ๆฝฎ่งฃๆง ๅ ใใซใใ ็บๅ ้ 4.53 [g/cm^3] 621[ โ ] 2 [Mohs] 1.78 56000 [Photons/MeV] 1050[ns] 550 [nm] 34
Reference โข (NIM EASIROC) โข (MPPC) โข (software of EASIROC) 35
Recommend
More recommend