km3 neutrino detector workshop
play

Km3 neutrino detector workshop January 23 20.30-22.00 KM3 - PowerPoint PPT Presentation

1/60 Km3 neutrino detector workshop January 23 20.30-22.00 KM3 Cerenkov neutrino detector, the Cerenkov medium properties: ice, sea water, lake water. Their effect on Km3 neutrino detector workshop detector structure, effective area and


  1. 1/60 Km3 neutrino detector workshop January 23 20.30-22.00 KM3 Cerenkov neutrino detector, the Cerenkov medium properties: ice, sea water, lake water. Their effect on Km3 neutrino detector workshop detector structure, effective area and angular resolution. Pascal Vernin & Chantal Racca – properties of the ANTARES site Giorgio Riccobene – evaluation of optical and oceanological properties for a Km3 detector close to Capo Passero (Sicily) Zhan Arys Dzhilkibaev - properties of Lake Baikal water Christian Spiering – properties of South Pole ice around AMANDA January 24 17.00-19.30 KM3 neutrino detectors – Cerenkov, radio, acoustic detections; effective area, energy range, energy and angular resolution, discovery capabilities. Present status and future techniques Luciano Moscoso – Cerenkov detection Christian Spiering – acoustic and radio detection Gianni Pavan (Centro Interdisciplinare di Bioacustica, Univ. Di Pavia)– The km3 neutrino detector: an example of deep underwater multidisciplinary laboratory Sandra Zavatarelli (INFN, Genova, Italy) – Present and future photon detectors for km3 neutrino telescope. Riccardo Papaleo (Lab. Naz. Del Sud, INFN, Catania, Italy)– study for a Km3 Cerenkov detector in Capo Passero site: mechanics, deployment, data transmission January 30 17.00-19.00 Gert-Jan Nooren – electronic equipment required for a Km3 neutrino detector Vincent Bertin – slow control for a Km3 neutrino detector Domenico Lo Presti (University of Catania, Italy) - development of a new electronics for the km3 neutrino detector. Antonio Capone - February 1 st 2002 - Les Houches - Summary of “Km3 neutrino detector workshop”

  2. 2/60 ANTARES: site evaluation results (1) deep Sea Currents Fouling on optical P. Vernin modules

  3. 3/60 ANTARES: site evaluation results (2) P. Vernin

  4. 4/60 ANTARES: site evaluation results (3) Optical background by β - from 40 K decay and by bioluminescent organism (1) C. Racca

  5. 5/60 ANTARES: site evaluation results (4) Optical background by β - from 40 K decay and by bioluminescent organism (2) C. Racca

  6. 6/60 NEMO - Capo Passero site KM3 KM4 100 km KM2 • KM2 36°10’ N 16°19’E, depth 3350m (1: Jan ‘99) • KM3 36°30’ N 15°50’E, depth 3345m (1: Feb ‘99, 1: Aug’99, 2: Dec ‘99) • KM4 36°19’N, 16°04’E, depth 3341m (2: Dec ‘99, 2: March ’00, contiuing ) G. Riccobene

  7. 7/60 NEMO - Deep Sea Current Measurements (August 1998 - running) 10 cm/sec North Tidal Effect Filtered out Raw Data 10 cm/sec North Preliminary analysis Lat:36°30’N Long:15°50’E Depth: 3350m Average current intensity: 3.6 cm/sec current meter moored @ -3325m RMS: 2.5 cm/sec Average angle: 8° NW G. Riccobene

  8. 8/60 Sediment rate measurements Northern Ionian Flux (mg m -2 day -1 ) Sea(1997 data) July 1 st G. Riccobene days

  9. 9/60 NEMO site bioluminescent bacteria Bioluminescent bacteria on SWC G. Riccobene

  10. 10/60 NEMO- Seasonal dependences of L a and L c Attenuation length [m] G. Riccobene

  11. 11/60 NEMO-BAIKAL joint measurement Absorption and Scattering in Lake Baikal (1000 m) G. Riccobene

  12. 12/60 NEMO-BAIKAL joint measurement Attenuation in Lake Baikal (1000 m) G. Riccobene

  13. 13/60 Summary of L abs and L att meas. in NEMO & Baikal sites G. Riccobene

  14. 14/60 NEMO Measurement of scattering angle distribution in deep sea water: DEWAS Preliminary G. Riccobene

  15. 15/60 BAIKAL parameters BAIKAL parameters Z. Dzhilkibaev

  16. 16/60 AMANDA: effective scattering coefficient λ scatt eff 10m 20m C. Spiering

  17. 17/60 Amanda scattering & absorption 20m 50m 100m 200m length C. Spiering

  18. 18/60 Parameters for Cerenkov detectors Optical parameters: (for blue light ) > ~ 90m in ice, 50 ÷ 80m in sea water λ abs ~ 20m in lake water (Baikal) ~ 0.2 ÷ 25m in ice, > 100m in sea water λ scatt ~ 50m in lake water (Baikal) -negligible on ice -relevant on sea water (40kHz minimum on 8”PMT in noise ANTARES site) -absent in ice fouling -relevant on up-looking surfaces in sea water (ANTARES) on optical -negligible in NEMO site (long time measurement needed) modules -relevant in Baikal lake

  19. 19/60 Km3 neutrino detector workshop KM3 neutrino detectors – Cerenkov, radio, acoustic detections; effective area, energy Workshop II range, energy and angular resolution, discovery capabilities. Present status and future techniques Luciano Moscoso – Cerenkov detection Christian Spiering – Acoustic and radio detection Gianni Pavan (Centro Interdisciplinare di Bioacustica, Univ. Di Pavia – The km3 neutrino detector: an example of deep underwater multidisciplinary laboratory Sandra Zavatarelli – Present and future photon detectors for km3 neutrino telescope. Riccardo Papaleo - Study for a Km3 Cerenkov detector in Capo Passero site: mechanics, deployment, data transmission Gert-Jan Nooren – Electronic equipment required for a Km3 neutrino detector Vincent Bertin – Slow control for a Km3 neutrino detector Domenico Lo Presti - Development of a new electronics for the km3 neutrino detector.

  20. 20/60 Cerenkov-Radio-Acoustic

  21. 21/60 Different techniques � Ice: Amanda ⇒ IceCube � Lake water: Baikal � Sea water: • Nestor ⇒ 7 towers in Pylos, Greece • Antares ⇒ KM3 • Nemo ⇒ KM3 near Sicily, Italy L. Moscoso

  22. 22/60 Relevant parameters � Angular resolution (astronomy) � Energy resolution • Induced muons • Contained events � Effective area or volume L. Moscoso

  23. 23/60 AMANDA Presence of the two surface shower detectors, SPASE-1 & 2 allows to check the AMANDA pointing resolution and the efficiency estimations. σ θ ≅ 2.5° L. Moscoso

  24. 24/60 Angular Resolution (Antares) The angular resolution of the detector depends on – reconstruction algorithms – selection programs – timing accuracy (PMT timing error, positional error on OMs, timing calibration error) (including scattering) • At high energies the neutrino pointing accuracy is 0.4° or better including light scattering effects • Note: at high energy error is dominated by reconstruction errors, at low energy error by the angle between the muon and neutrino L. Moscoso

  25. AMANDA 25/60 L. Moscoso

  26. 26/60 Effective area for Antares trigger reconstruction selection L. Moscoso

  27. 27/60 Energy resolution in Antares Energy estimation based on the quantity of light detected by the optical modules. Energy resolution is a factor of 4-5. L. Moscoso

  28. 28/60 Detection of ν e ν µ I guess !!! Muons induced by ν µ : Tonino M T /M D ≈ (2.5km/D)ln(1.+E ν /(500GeV)) – 100-300 for the first gen. at 1 TeV – 50-100 (SuperK, Macro,…) – 10-20 for present projects – 2.5 for KM3 Energy determination: E Meas ∝ E 1/2 at HE – 1 TeV → 370 GeV – 1 PeV → 20 TeV – 1 EeV → 700 TeV L. Moscoso

  29. 29/60 Detection of ν e Contained ν e events: F. Bernard thesis (Antares) Worse angular resolution: σ θ ≅ 2° Better energy reconstruction: ∆ E/E ≅ 15% L. Moscoso

  30. Amanda/Antares 30/60 complementarity Amanda Antares L. Moscoso

  31. 31/60 Acoustic1

  32. 32/60 Acoustic2

  33. 33/60 Acoustic3

  34. 34/60 Acoustic4

  35. 35/60 Baikal : Cerenkov Acoustic5 and Acoustic set-up Z. Dzhilkibaev

  36. 36/60 Acoustic6 C. Spiering

  37. 37/60 Rice1 C. Spiering

  38. 38/60 Rice2 C. Spiering

  39. 39/60 Rice3 C. Spiering

  40. 40/60 Rice4 C. Spiering

  41. 41/60 IceCube

  42. 42/60 Baikal upgrading

Recommend


More recommend