p l h c 2 0 1 1 p e r u g i a j u n e 6 2 0 1 1 c o n t e
play

P L H C 2 0 1 1 P e r u g i a , J u n e 6 , 2 - PowerPoint PPT Presentation

P L H C 2 0 1 1 P e r u g i a , J u n e 6 , 2 0 1 1 C O N T E N T S Ph Physics mo ysics motiv tivations tions Ultra High Energy Cosmic Rays open issues How LHCf can contribute in this field


  1. P L H C 2 0 1 1 P e r u g i a , J u n e 6 , 2 0 1 1

  2. C O N T E N T S • Ph Physics mo ysics motiv tivations tions • Ultra High Energy Cosmic Rays open issues How LHCf can contribute in this field • • Over Ov ervie view of the LHCf e of the LHCf experiment periment Forwar ard pho d photon energy spectrum on energy spectrum • at at √ s = 7eV pr s = 7eV proton-pr on-proton collisions n collisions • Summar Summary and outlooks and outlooks O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  3. T h e L H C f c o l l a b o r a t i o n K.Fukatsu, T.Iso, Y.Itow, K.Kawade, T.Mase, K.Masuda, Y.Matsubara, G.Mitsuka, Y.Muraki, T.Sako, K.Suzuki, K.Taki Solar-Terrestrial Environment Laboratory, Nagoya University, Japan H.Menjo Kobayashi-Maskawa Institute, Nagoya University, Japan K.Yoshida Shibaura Institute of Technology, Japan K.Kasahara, Y.Shimizu, T.Suzuki, S.Torii Waseda University, Japan T.Tamura Kanagawa University, Japan O.Adriani, L.Bonechi, M.Bongi, R.D’Alessandro, M.Grandi, P.Papini, S.Ricciarini, G.Castellini INFN, Univ. di Firenze, Italy K.Noda, A.Tricomi INFN, Univ. di Catania, Italy M.Haguenauer Ecole Polytechnique, France W.C.Turner LBNL, Berkeley, USA A-L.Perrot CERN, Switzerland O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  4. O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  5. U H E C R O B S E R V A T I O N S ( 1 0 Y E A R S A G O A N D N O W ) � Debate in AGASA, HiRes results in 10 years ago � Now Auger, HiRes (final), TA indicate cutoff � Absolute values differ between experiments and between methods O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  6. E S T I M A T E O F P A R T I C L E T Y P E ( X ) M A X 0g/cm 2 Xmax Auger TA Proton and nuclear showers of same total energy � X max max giv gives inf es informa rmation ion of the primar of the primary par y partic icle le � Results are dif esults are different erent be betw tween e een experiments periments � Int Interpre reta tati tion relies on on relies on the MC predicti the MC prediction and on and HiRes has q has quit ite str e strong model dependence ng model dependence O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  7. O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  8. H O W L H CC A N C O N T R I B U T E ? LHC giv LHC gives us s us the uniq the unique ue oppor opportunity t unity to measure hadr measure hadronic onic int interactions at 1 ractions at 10 17 17 eV eV → E lab 7TeV+7T 7T eV+7TeV eV lab = 1 = 10 17 17 eV eV → E lab 3.5T .5TeV+3.5T V+3.5TeV eV lab = 2.6x1 = 2.6x10 16 16 eV eV → E lab 450GeV+450GeV 450GeV+450GeV lab = 2x1 = 2x10 14 14 eV eV Cosmic ray spectrum Ke Key p parameters for air r air sho shower de er developments lopments SPS Total tal cr cross section oss section Tevatron ↔ TOT TOTEM, A ATLAS(ALFA) LHC Multiplicity Multiplicity ↔ Central det Central detect ctor ors In Inelasticity/Secondar elasticity/Secondary spec spectra tra ↔ Fo Forward c calorimete ters LHCf LHCf , ZDCs , ZDCs AUGER O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  9. W H A T L H C FC A N M E A S U R E ? Front view of calorimeters @ 100µrad crossing angle Energy spectra and T Energy spectra and Transv ansver erse momentum se momentum η distribution of distribution of Projected edge of beam pipe •Gamma Gamma-ra -rays (E>1 s (E>100GeV 00GeV,dE/E<5%) ,dE/E<5%) 8.5 • Neutral Neutral Hadr Hadrons (E>a f ons (E>a few w 100 00 GeV GeV, dE/E~30%) dE/E~30%) • π 0 (E>600GeV (E>600GeV, dE/E<3%) , dE/E<3%) in the pseudo-rapidity range η >8.4 in the pseudo-rapidity range >8.4 ∞ � Forward region is very effective on air shower development. Multiplicity@1 Multiplicity@14T 4TeV eV Energy Flux @1 Energy Flux @14T 4TeV eV High energy flux !! High energy flux !! Lo Low multiplicity !! w multiplicity !! O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011 DPMJET3

  10. Π 0 S P E C T R U M A N D A I R S H O W E R QGSJET II original QGSJET II original Artificial modif Ar tificial modification cation X=E/E X=E/E 0 Ignoring X>0.1 Ignoring X>0. 1 meson meson π 0 spectrum at E spectrum at E lab lab = 1 = 10 19 19 eV eV Longitudinal AS de Longitudinal AS development lopment � Ar Artif tificial modification of meson cial modification of meson spectra (in agreement with dif spectra (in agreement with differences erences betw between models) and its ef een models) and its effect t ct to air air sho shower er � Im Impor portance of E/E ance of E/E 0 >0. >0.1 mesons mesons 30g 30g/cm 2 O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  11. L H C FE X P E R I M E N T A L S E T - U P Detect De ctor ors insta nstalled lled in the he TAN region, egion, 140 m away fr from om ATLAS LAS Int nteract eraction ion Point oint (IP1) IP1) � Here the beam pipe splits in 2 separate tubes. � Charged particle are swept away by magnets � We will cover | η |>8 Protons Charged particles Neutral particles Front Counters: thin scintillators with 8x8cm 2 Beam pipe acceptance installed in front of each main detector O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  12. A R M 1 & A R M 2 D E T E C T O R S 4 pairs of scintillating fiber layers for tracking purpose (6, 10, 32, 38 r.l.) Impact point ( η ) 4 pairs of silicon microstrip layers (6, 12, 30, 42 r.l.) for tracking Arm# 2 purpose (X and Y directions) Absorber 22 tungsten layers 7– 14 mm thick (2-4 r.l.) (W: X 0 = 3.5mm, R M = 9mm) Arm# 1 Arm# 1 16 scintillator layers Energy (3 mm thick) Trigger and energy Expected Performance profile measurements Energy resolution (> 100GeV) < 5% for g, 30% for neutrons Position resolution O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011 < 200µm (Arm#1), 40µm (Arm#2)

  13. A T L A S & L H C F O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  14. Π 0 R E C O N S T R U C T I O N An example of π 0 events measured energy spectrum @ Arm2 measured energy spectrum @ Arm2 25mm 32mm preliminary Silicon strip-X view R γ 1 (E θ (E 1 ) = 140 m Reconstruct constructed mass @ Arm2 d mass @ Arm2 R 140m 40m θ γ 2 (E (E 2 ) I.P I.P.1 • Pi0 ’ s are the main source of electromagnetic secondaries in high energy collisions. • The mass peak is very useful to confirm the detector performances and to estimate the systematic error of energy scale.

  15. P A P E R S U B M I T T E D T O P L B “ M E A S U R E M E N T O F Z E R O D E G R E E S I N G L E P H O T O N E N E R G Y S P E C T R A F O R √ S = 7 T E V P R O T O N - P R O T O N C O L L I S I O N S A T L H C “ A R X I V : 1 1 0 4 . 5 2 9 4 C E R N - P H - E P - 2 0 1 1 - 0 6 1 , O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  16. L H C FO P E R A T I O N S @ 9 0 0 G E V& 7 T E V With Stable Beam at 900 GeV Dec 6 th – Dec 15 th 2009 With Stable Beam at 900 GeV May 2 nd – May 27 th 2010 Shower Gamma Hadron Arm1 46,800 4,100 11,527 Arm2 66,700 6,158 26,094 With Stable Beam at 7 TeV March 30 th - July 19 th 2010 We took data with and without 100 µrad crossing angle for different vertical detector positions Shower Gamma Hadron Arm1 172,263,255 56,846,874 111,971,115 344,526 Arm2 160,587,306 52,993,810 104,381,748 676,157 O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  17. D A T A S E T F O R I N C L U S I V E P H O T O N S P E C T R U M A N A L Y S I S • Data Data – Date : 15 May 2010 17:45-21:23 (Fill Number : 1104) except runs during the luminosity scan. – Luminosity : (6.5-6.3)x10 28 cm -2 s -1 , – DAQ Live Time : 85.7% for Arm1, 67.0% for Arm2 – Integrated Luminosity : 0.68 nb -1 for Arm1, 0.53nb -1 for Arm2 – Number of triggers : 2,916,496 events for Arm1 3,072,691 events for Arm2 – Detectors in nominal positions and Normal Gain • Mont Monte Carlo e Carlo – QGSJET II-03, DPMJET 3.04, SYBILL 2.1, EPOS 1.99 and PYTHIA8.145: about 10 7 pp inelastic collisions each O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

  18. O S C A R A D R I A N I P L H C 2 011 , P E R U G I A , J U N E 6 , 2 011

Recommend


More recommend