http andrzej pownuk com
play

http://andrzej.pownuk.com Adaptive Taylor Series and its Place - PowerPoint PPT Presentation

The University of Texas at El Paso Andrzej Pownuk http://andrzej.pownuk.com Adaptive Taylor Series and its Place photo here Applications in the Interval Finite Element Method Equation with uncertain parameters = b = ax b x a Example x =


  1. The University of Texas at El Paso Andrzej Pownuk http://andrzej.pownuk.com Adaptive Taylor Series and its Place photo here Applications in the Interval Finite Element Method

  2. Equation with uncertain parameters = b = ax b x a Example x = [1,2] [1,4] x = ?

  3. Algebraic solution x = [1,2] [1,4] x = [1,2] because = [1,2][1,2] [1,4]

  4. Algebraic solution x = [1,4] [1,4] x = = [1,1] 1 because  = [1,4] 1 [1,4]

  5. Algebraic solution x = [ 1 , 8] [ 1 , 4] x = ? Algebraic solution do not have physical interpretation.

  6. United solution set x = [1,2] [1,4]   1 ,4 =   x   2 because = =   { : x ax b a , [1,2], b [1,4]} x

  7. Web applications (Java)

  8. Monte Carlo method 3D solution set

  9. Monte Carlo method 3D solution set

  10. Solution Set = − = p  u ( ) p { ( ): ( ) u p A p u f p ( ) 0, p } i i = − =  [ ( ) u p , ( ) u p ] { ( ): ( ) u p A p u f p ( ) 0, p p } i i i

  11. Monotonicity of the solution • Monotone solution       + u p p 1 1 =  1   1 2    − 1 1  u   p        2 2 p p = + = u 1 p , u 1 1 2 2 2 2 • Non-monotone solution − = 2 4 u p 0 = = − 2 2 u p u , p 1 2

  12. Interval solution for monotone functions (gradient descent method)  u = =  m i n m ax p p p , p 0 then If  p  u = =  m i n m ax p p p , p 0 then If  p = = m i n m ax u u p ( ) , u u p ( )

  13. Monotonicity of the solution

  14. Plane stress

  15. Interval solution Verification of the results by using search method with 3 intermediate points

  16. Interval solution

  17. Interval solution

  18. Interval solution

  19. Interval solution

  20. Truss example

  21. Truss structure   + d du = EA n 0   dx dx  

  22. Interval solution Verifications of the results by using search method with 5 intermediate points

  23. Interval solution

  24. Interval solution

  25. Verification of the monotonicity by using second order monotonicity test

  26. More examples A. Pownuk, Monotonicity of the solution of the interval equations of structural mechanics - list of examples, The University of Texas at El Paso, Department of Mathematical Sciences Research Reports Series Texas Research Report No. 2009-01, El Paso, Texas, USA [ Download ] 817 pages

  27. Example

  28. Automatic generation of examples

  29. Scripting language

  30. Results of the calculations # ***************** # Postprocessing # ***************** print_interval_displacements print_Jacobian print_Jacobian_binary print_parameters print_dof all print_number_DOF print_time print_number_of_simulations

  31. 2D interval solution # ***************** # Postprocessing # ***************** print_interval_displacements print_interval_stress print_interval_Mises_stress print_interval_Mises_stress_to_matlab print_interval_stress_to_matlab export_model_to_ansys print_time

  32. Uncertainty in geometry

  33. Andrzej Pownuk, Behzad Djafari-Rouhani, Naveen Kumar Goud Ramunigari, Finite Element Method with the Interval Set Parameters and its Applications in Computational Science AMERICAN CONFERENCE ON APPLIED MATHEMATICS (AMERICAN-MATH '10) University of Harvard, Cambridge, USA, January 27-29, 2010. ISBN: 978-960-474-150-2, ISSN: 1790-2769, pp. 310-315.

  34. Uncertainty in geometry

  35. Time dependent solution

  36. Time dependent solutions

  37. Interval solution

  38. Combinatoric solution

  39. Damped vibrations

  40. Combinatoric solution

  41. Numerical integration

  42. Numerical integration

  43. Interval solution

  44. Nonmonotone example

  45. Response surface method (Hermitte interpolation)

  46. Time dependent solution

  47. Numerical values

  48. Big uncertainty

  49. Big uncertainty – numerical values

  50. Small uncertainty

  51. Small uncertainty – numerical values

  52. Adaptive Taylor series

  53. Numerical values

  54. Numerical values

  55. Midpoint and upper and lower bound

  56. 5 solutions

  57. Vibrations with the interval parameters

  58. Sensitivity analysis

  59. Interval solution after sensitivity analysis

  60. Sensitivity vs midpoint solution

  61. • M.V.Rama Rao, Andrzej Pownuk, Stefan Vandewalle, David Moens Transient Response of Structures with Uncertain Structural Parameters. Journal of Structural Safety (submitted for publication).

  62. Conclusions • Using adaptive Tylor series it is possible to get the interval solution. • The procedure is very effective. • It is possible to get error estimation and control the accuracy of the calculations.

Recommend


More recommend