Analysis by abstraction from stutter steps stutter5.4-4 simplified TS β 1 x =2 y =4 β 1 x =2 y =4 β 1 x =2 y =4 z =3 z =3 z =3 representation β 2 x =1 y =4 z =3 β 2 x =1 y =4 β 2 x =1 y =4 z =3 z =3 z =3 z =3 z =3 β 3 x =1 y =2 β 3 x =1 y =2 β 3 x =1 y =2 z =3 z =3 z =3 β 1 x =1 y =2 β 1 x =1 y =2 β 1 x =1 y =2 z =1 z =1 z =1 z =1 z =1 z =1 β 2 x =2 y =2 z =1 β 2 x =2 y =2 β 2 x =2 y =2 z =1 z =1 z =0 z =0 z =0 β 3 x =2 y =1 z =1 β 3 x =2 y =1 β 3 x =2 y =1 z =1 z =1 . . . . . . . . . β 1 x =2 y =1 z =0 β 1 x =2 y =1 z =0 β 1 x =2 y =1 z =0 . . . . . . . . . 21 / 444
Overview overview7.4-stutter-trace Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation-Tree Logic (CTL) Equivalences and Abstraction bisimulation, CTL/CTL*-equivalence computing the bisimulation quotient abstraction stutter steps stutter LT relations β β β β β β stutter bisimulation simulation relations 22 / 444
Remind: trace relations stutter5.4-5-remind 23 / 444
Remind: trace relations stutter5.4-5-remind trace equivalence for paths Ο 1 Ο 1 Ο 1 , Ο 2 Ο 2 Ο 2 are trace equivalent iff trace ( Ο 1 ) = trace ( Ο 2 ) trace ( Ο 1 ) = trace ( Ο 2 ) trace ( Ο 1 ) = trace ( Ο 2 ) 24 / 444
Remind: trace relations stutter5.4-5-remind trace equivalence for paths Ο 1 Ο 1 Ο 1 , Ο 2 Ο 2 Ο 2 are trace equivalent iff trace ( Ο 1 ) = trace ( Ο 2 ) trace ( Ο 1 ) = trace ( Ο 2 ) trace ( Ο 1 ) = trace ( Ο 2 ) trace inclusion for TS: Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) β Ο 1 β Traces ( T 1 ) β Ο 1 β Traces ( T 1 ) β Ο 1 β Traces ( T 1 ) β Ο 2 β Traces ( T 2 ) β Ο 2 β Traces ( T 2 ) β Ο 2 β Traces ( T 2 ) s.t. Ο 1 Ο 1 Ο 1 , Ο 2 Ο 2 Ο 2 are trace equivalent 25 / 444
Remind: trace relations stutter5.4-5-remind trace equivalence for paths Ο 1 Ο 1 Ο 1 , Ο 2 Ο 2 Ο 2 are trace equivalent iff trace ( Ο 1 ) = trace ( Ο 2 ) trace ( Ο 1 ) = trace ( Ο 2 ) trace ( Ο 1 ) = trace ( Ο 2 ) trace inclusion for TS: Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) β Ο 1 β Traces ( T 1 ) β Ο 1 β Traces ( T 1 ) β Ο 1 β Traces ( T 1 ) β Ο 2 β Traces ( T 2 ) β Ο 2 β Traces ( T 2 ) β Ο 2 β Traces ( T 2 ) s.t. Ο 1 Ο 1 Ο 1 , Ο 2 Ο 2 Ο 2 are trace equivalent trace equivalence for TS: Traces ( T 1 ) β Traces ( T 2 ) β§ Traces ( T 2 ) β Traces ( T 1 ) Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) β§ β§ Traces ( T 2 ) β Traces ( T 1 ) Traces ( T 2 ) β Traces ( T 1 ) 26 / 444
Remind: trace relations stutter5.4-5-remind trace equivalence for paths Ο 1 Ο 1 Ο 1 , Ο 2 Ο 2 Ο 2 are trace equivalent iff trace ( Ο 1 ) = trace ( Ο 2 ) trace ( Ο 1 ) = trace ( Ο 2 ) trace ( Ο 1 ) = trace ( Ο 2 ) trace inclusion for TS: Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) β Ο 1 β Traces ( T 1 ) β Ο 1 β Traces ( T 1 ) β Ο 1 β Traces ( T 1 ) β Ο 2 β Traces ( T 2 ) β Ο 2 β Traces ( T 2 ) β Ο 2 β Traces ( T 2 ) s.t. Ο 1 Ο 1 Ο 1 , Ο 2 Ο 2 Ο 2 are trace equivalent trace equivalence for TS: Traces ( T 1 ) β Traces ( T 2 ) β§ Traces ( T 2 ) β Traces ( T 1 ) Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) β§ β§ Traces ( T 2 ) β Traces ( T 1 ) Traces ( T 2 ) β Traces ( T 1 ) Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) iff for each LT property E E E : T 2 | T 2 | T 2 | = E = E = E implies T 1 | T 1 | T 1 | = E = E = E 27 / 444
Remind: trace relations stutter5.4-5-remind trace equivalence for paths Ο 1 Ο 1 Ο 1 , Ο 2 Ο 2 Ο 2 are trace equivalent iff trace ( Ο 1 ) = trace ( Ο 2 ) trace ( Ο 1 ) = trace ( Ο 2 ) trace ( Ο 1 ) = trace ( Ο 2 ) trace inclusion for TS: Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) β Ο 1 β Traces ( T 1 ) β Ο 1 β Traces ( T 1 ) β Ο 1 β Traces ( T 1 ) β Ο 2 β Traces ( T 2 ) β Ο 2 β Traces ( T 2 ) β Ο 2 β Traces ( T 2 ) s.t. Ο 1 Ο 1 Ο 1 , Ο 2 Ο 2 Ο 2 are trace equivalent trace equivalence for TS: Traces ( T 1 ) β Traces ( T 2 ) β§ Traces ( T 2 ) β Traces ( T 1 ) Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) β§ β§ Traces ( T 2 ) β Traces ( T 1 ) Traces ( T 2 ) β Traces ( T 1 ) Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) iff for each LT property E E E : T 2 | T 2 | T 2 | = E = E implies T 1 | = E T 1 | T 1 | = E = E = E οΏ½ οΏ½ οΏ½    trace equivalent TS satisfy the same LTL formulas 28 / 444
Stutter equivalence for paths stutter5.4-stutter-equiv-paths 29 / 444
Stutter equivalence for paths stutter5.4-stutter-equiv-paths stutter equivalence for infinite path fragments: 30 / 444
Stutter equivalence for paths stutter5.4-stutter-equiv-paths stutter equivalence for infinite path fragments: β β β Ο 1 = Ο 2 Ο 1 Ο 1 = Ο 2 = Ο 2 iff there exists an infinite word 2 AP οΏ½ Ο s.t. the 2 AP οΏ½ Ο 2 AP οΏ½ Ο οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β traces of Ο 1 Ο 1 Ο 1 and Ο 2 Ο 2 Ο 2 are of the form A 0 . . . A 0 A 1 . . . A 1 A 2 . . . A 2 . . . A 0 . . . A 0 A 1 . . . A 1 A 2 . . . A 2 . . . A 0 . . . A 0 A 1 . . . A 1 A 2 . . . A 2 . . . 31 / 444
Stutter equivalence for paths stutter5.4-stutter-equiv-paths stutter equivalence for infinite path fragments: β β β Ο 1 = Ο 2 Ο 1 Ο 1 = Ο 2 = Ο 2 iff there exists an infinite word 2 AP οΏ½ Ο s.t. the 2 AP οΏ½ Ο 2 AP οΏ½ Ο οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β traces of Ο 1 Ο 1 Ο 1 and Ο 2 Ο 2 Ο 2 are of the form A n 0 A n 0 A n 0 0 A n 1 0 A n 1 0 A n 1 1 A n 2 1 A n 2 1 A n 2 2 . . . 2 . . . 2 . . . n 0 , n 1 , n 2 , . . . β₯ 1 where n 0 , n 1 , n 2 , . . . n 0 , n 1 , n 2 , . . . are natural numbers β₯ 1 β₯ 1 32 / 444
Stutter equivalence for paths stutter5.4-stutter-equiv-paths stutter equivalence for infinite path fragments: β β β Ο 1 = Ο 2 Ο 1 Ο 1 = Ο 2 = Ο 2 iff there exists an infinite word 2 AP οΏ½ Ο s.t. the 2 AP οΏ½ Ο 2 AP οΏ½ Ο οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β traces of Ο 1 Ο 1 Ο 1 and Ο 2 Ο 2 Ο 2 are of the form A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . 33 / 444
Stutter equivalence for paths stutter5.4-stutter-equiv-paths stutter equivalence for infinite path fragments: β β β Ο 1 = Ο 2 Ο 1 Ο 1 = Ο 2 = Ο 2 iff there exists an infinite word 2 AP οΏ½ Ο s.t. the 2 AP οΏ½ Ο 2 AP οΏ½ Ο οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β traces of Ο 1 Ο 1 Ο 1 and Ο 2 Ο 2 Ο 2 are of the form A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . stutter equivalence for finite path fragments: β β β Ο 1 Λ Ο 1 Ο 1 Λ Λ = Λ = Λ = Λ Ο 2 Ο 2 Ο 2 iff there exists a finite word 2 AP οΏ½ + s.t. 2 AP οΏ½ + 2 AP οΏ½ + οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . A n β A 0 A 1 A 2 . . . A n β A 0 A 1 A 2 . . . A n β the traces of Λ Ο 1 Ο 1 Λ Λ Ο 1 and Λ Ο 2 Ο 2 Λ Λ Ο 2 are in A 0+ A 1+ A 2+ . . . A n + A 0+ A 1+ A 2+ . . . A n + A 0+ A 1+ A 2+ . . . A n + 34 / 444
Stutter trace relations for TS stutter5.4-5 stutter equivalence for infinite path fragments: β β β Ο 1 = Ο 2 Ο 1 Ο 1 = Ο 2 = Ο 2 iff there exists an infinite word 2 AP οΏ½ Ο s.t. the 2 AP οΏ½ Ο 2 AP οΏ½ Ο οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β traces of Ο 1 Ο 1 Ο 1 and Ο 2 Ο 2 Ο 2 are of the form A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . 35 / 444
Stutter trace relations for TS stutter5.4-5 stutter equivalence for infinite path fragments: β β β Ο 1 = Ο 2 Ο 1 Ο 1 = Ο 2 = Ο 2 iff there exists an infinite word 2 AP οΏ½ Ο s.t. the 2 AP οΏ½ Ο 2 AP οΏ½ Ο οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β traces of Ο 1 Ο 1 Ο 1 and Ο 2 Ο 2 Ο 2 are of the form A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . stutter trace inclusion for transition systems: T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff for all paths Ο 1 Ο 1 Ο 1 of T 1 T 1 T 1 there exists a path Ο 2 Ο 2 of T 2 Ο 2 T 2 T 2 β β β s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 36 / 444
Example: stutter trace inclusion οΏ½ οΏ½ οΏ½ stutter5.4-5-ex T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β β β s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 = β = β = β = { a } = { a } = { a } = { b } = { b } = { b } 37 / 444
Example: stutter trace inclusion οΏ½ οΏ½ οΏ½ stutter5.4-5-ex T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β β β s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 = β = β = β οΏ½ οΏ½ οΏ½ = { a } = { a } = { a } = { b } = { b } = { b } 38 / 444
Example: stutter trace inclusion οΏ½ οΏ½ οΏ½ stutter5.4-5-ex T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β β β s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 = β = β = β οΏ½ οΏ½ οΏ½ = { a } = { a } = { a } = { b } = { b } = { b } ( β + { b } + { a } + ) Ο all traces have the form ( β + { b } + { a } + ) Ο ( β + { b } + { a } + ) Ο or ( β + { b } + { a } + ) β β Ο ( β + { b } + { a } + ) β β Ο ( β + { b } + { a } + ) β β Ο 39 / 444
Stutter trace inclusion and LTL stutter5.4-5-LTL T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β β β s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 Does stutter trace inclusion preserve LTL properties? 40 / 444
Stutter trace inclusion and LTL stutter5.4-5-LTL T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β β β s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 Does stutter trace inclusion preserve LTL properties? οΏ½ οΏ½ οΏ½       Ο i.e., for all LTL formulas Ο Ο : T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 β§ β§ β§ T 2 | T 2 | T 2 | = Ο = Ο = Ο implies T 1 | T 1 | T 1 | = Ο = Ο = Ο 41 / 444
Stutter trace inclusion and LTL stutter5.4-5-LTL T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β β β s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 Does stutter trace inclusion preserve LTL properties? οΏ½ οΏ½ οΏ½       Ο i.e., for all LTL formulas Ο Ο : T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 β§ β§ β§ T 2 | T 2 | T 2 | = Ο = Ο = Ο implies T 1 | T 1 | T 1 | = Ο = Ο = Ο answer: no 42 / 444
Stutter trace inclusion and LTL stutter5.4-5-LTL T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β β β s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 Does stutter trace inclusion preserve LTL properties? οΏ½ οΏ½ οΏ½       Ο i.e., for all LTL formulas Ο Ο : T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 β§ β§ β§ T 2 | T 2 | T 2 | = Ο = Ο = Ο implies T 1 | T 1 | T 1 | = Ο = Ο = Ο answer: no Example: LTL formulas of the form οΏ½ a οΏ½ a οΏ½ a 43 / 444
Stutter trace inclusion and LTL \οΏ½ \οΏ½ \οΏ½ stutter5.4-5-thm T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β β β s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 Let T 1 T 1 T 1 and T 2 T 2 T 2 are TS without terminal states and Ο Ο Ο an LTL \οΏ½ \οΏ½ formula. Then: \οΏ½ T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 β§ β§ β§ T 2 | T 2 | T 2 | = Ο = Ο = Ο implies T 1 | T 1 | T 1 | = Ο = Ο = Ο 44 / 444
Stutter trace inclusion and LTL \οΏ½ \οΏ½ \οΏ½ stutter5.4-5-thm T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β β β s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 Let T 1 T 1 T 1 and T 2 T 2 T 2 are TS without terminal states and Ο Ο Ο an LTL \οΏ½ \οΏ½ formula. Then: \οΏ½ T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 β§ β§ β§ T 2 | T 2 | T 2 | = Ο = Ο = Ο implies T 1 | T 1 | T 1 | = Ο = Ο = Ο where LTL \οΏ½ \οΏ½ = = = LTL without the next operator οΏ½ οΏ½ οΏ½ \οΏ½ 45 / 444
β β β = Stutter trace equivalence = = for TS stutter5.4-5a 46 / 444
β β β = Stutter trace equivalence = = for TS stutter5.4-5a stutter trace inclusion T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 β β β β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 47 / 444
β β β = Stutter trace equivalence = = for TS stutter5.4-5a stutter trace inclusion T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 β β β β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 stutter trace equivalence β β β T 1 T 1 T 1 = T 2 = T 2 = T 2 iff T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 οΏ½ T 1 T 2 οΏ½ T 1 T 2 οΏ½ T 1 48 / 444
β β β = Stutter trace equivalence = = for TS stutter5.4-5a stutter trace inclusion T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 β β β β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 stutter trace equivalence β β β T 1 T 1 T 1 = T 2 = T 2 = T 2 iff T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 οΏ½ T 1 T 2 οΏ½ T 1 T 2 οΏ½ T 1 οΏ½ οΏ½ οΏ½    kernel of οΏ½ οΏ½ οΏ½ , i.e., coarsest equivalence that refines οΏ½ οΏ½ οΏ½ 49 / 444
β β β = Stutter trace equivalence = = for TS stutter5.4-5a stutter trace inclusion T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 β β β β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 For all LTL \οΏ½ \οΏ½ formulas Ο Ο Ο : \οΏ½ T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 β§ β§ β§ T 2 | T 2 | T 2 | = Ο = Ο = Ο implies T 1 | T 1 | T 1 | = Ο = Ο = Ο stutter trace equivalence β β β T 1 T 1 T 1 = T 2 = T 2 = T 2 iff T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 οΏ½ T 1 T 2 οΏ½ T 1 T 2 οΏ½ T 1 οΏ½ οΏ½ οΏ½    kernel of οΏ½ οΏ½ οΏ½ , i.e., coarsest equivalence that refines οΏ½ οΏ½ οΏ½ 50 / 444
β β β = Stutter trace equivalence = = for TS stutter5.4-5a stutter trace inclusion T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 β β β β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 1 β Paths ( T 1 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) β Ο 2 β Paths ( T 2 ) s.t. Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 For all LTL \οΏ½ \οΏ½ formulas Ο Ο Ο : \οΏ½ T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 β§ β§ β§ T 2 | T 2 | T 2 | = Ο = Ο = Ο implies T 1 | T 1 | T 1 | = Ο = Ο = Ο stutter trace equivalence β β β T 1 T 1 T 1 = T 2 = T 2 = T 2 iff T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 οΏ½ T 1 T 2 οΏ½ T 1 T 2 οΏ½ T 1 β β β If T 1 T 1 T 1 = T 2 = T 2 = T 2 then T 1 T 1 T 1 and T 2 T 2 T 2 are LTL \οΏ½ \οΏ½ equivalent. \οΏ½ 51 / 444
Correct or wrong? stutter5.4-13a β β β = = = 52 / 444
Correct or wrong? stutter5.4-13a β β β = = = correct 53 / 444
Correct or wrong? stutter5.4-13a β β β = = = correct T 2 have the form β’ + + β’ + + or β’ Ο Ο Ο + + The traces of T 1 T 1 T 1 and T 2 T 2 54 / 444
Correct or wrong? stutter5.4-13a β β β = = = correct T 2 have the form β’ + + β’ + + or β’ Ο Ο Ο + + The traces of T 1 T 1 T 1 and T 2 T 2 β β β = = = 55 / 444
Correct or wrong? stutter5.4-13a β β β = = = correct T 2 have the form β’ + + β’ + + or β’ Ο Ο Ο + + The traces of T 1 T 1 T 1 and T 2 T 2 wrong β β β = = = 56 / 444
Correct or wrong? stutter5.4-13a β β β = = = correct T 2 have the form β’ + + β’ + + or β’ Ο Ο Ο + + The traces of T 1 T 1 T 1 and T 2 T 2 wrong β β β = = = T 1 has a finite trace β’ + + β’ , while T 2 + T 1 T 2 T 1 T 2 has not 57 / 444
Correct or wrong? stutter5.4-13b If T 1 T 1 T 1 and T 2 T 2 T 2 are TS over AP AP AP then: β β β T 1 βΌ T 2 T 1 = T 2 T 1 βΌ T 2 T 1 βΌ T 2 implies T 1 T 1 = T 2 = T 2 58 / 444
Correct or wrong? stutter5.4-13b If T 1 T 1 T 1 and T 2 T 2 T 2 are TS over AP AP AP then: β β β T 1 βΌ T 2 T 1 = T 2 T 1 βΌ T 2 T 1 βΌ T 2 implies T 1 T 1 = T 2 = T 2 Φ ΥΏ Φ Φ ΥΏ ΥΏ bisimulation stutter trace equivalence equivalence 59 / 444
Correct or wrong? stutter5.4-13b If T 1 T 1 T 1 and T 2 T 2 T 2 are TS over AP AP AP then: β β β T 1 βΌ T 2 T 1 = T 2 T 1 βΌ T 2 T 1 βΌ T 2 implies T 1 T 1 = T 2 = T 2 Φ ΥΏ Φ Φ ΥΏ ΥΏ bisimulation stutter trace equivalence equivalence correct 60 / 444
Correct or wrong? stutter5.4-13b If T 1 T 1 T 1 and T 2 T 2 T 2 are TS over AP AP AP then: β β β T 1 βΌ T 2 T 1 = T 2 T 1 βΌ T 2 T 1 βΌ T 2 implies T 1 T 1 = T 2 = T 2 Φ ΥΏ Φ Φ ΥΏ ΥΏ bisimulation stutter trace equivalence equivalence correct , as β’ T 1 βΌ T 2 T 1 βΌ T 2 T 1 βΌ T 2 implies Traces ( T 1 ) = Traces ( T 2 ) Traces ( T 1 ) = Traces ( T 2 ) Traces ( T 1 ) = Traces ( T 2 ) β’ trace equivalent paths are stutter trace equivalent 61 / 444
Correct or wrong? stutter5.4-13b If T 1 T 1 T 1 and T 2 T 2 T 2 are TS over AP AP AP then: β β β T 1 βΌ T 2 T 1 = T 2 T 1 βΌ T 2 T 1 βΌ T 2 implies T 1 T 1 = T 2 = T 2 Φ ΥΏ Φ Φ ΥΏ ΥΏ bisimulation stutter trace equivalence equivalence correct , as β’ T 1 βΌ T 2 T 1 βΌ T 2 T 1 βΌ T 2 implies Traces ( T 1 ) = Traces ( T 2 ) Traces ( T 1 ) = Traces ( T 2 ) Traces ( T 1 ) = Traces ( T 2 ) β’ trace equivalent paths are stutter trace equivalent obviously: Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) Traces ( T 1 ) β Traces ( T 2 ) implies T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 62 / 444
Stutter-insensitive LT properties stutter5.4-st-ins-prop 63 / 444
Stutter-insensitive LT properties stutter5.4-st-ins-prop stutter equivalence for infinite words 64 / 444
Stutter-insensitive LT properties stutter5.4-st-ins-prop 2 AP οΏ½ Ο 2 AP οΏ½ Ο 2 AP οΏ½ Ο : οΏ½ οΏ½ οΏ½ stutter equivalence for infinite words Ο 1 Ο 1 Ο 1 , Ο 2 β Ο 2 β Ο 2 β 65 / 444
Stutter-insensitive LT properties stutter5.4-st-ins-prop 2 AP οΏ½ Ο 2 AP οΏ½ Ο 2 AP οΏ½ Ο : οΏ½ οΏ½ οΏ½ stutter equivalence for infinite words Ο 1 Ο 1 Ο 1 , Ο 2 β Ο 2 β Ο 2 β β β β Ο 1 = Ο 2 Ο 1 Ο 1 = Ο 2 = Ο 2 iff there exists an infinite word 2 AP οΏ½ Ο s.t. Ο 1 2 AP οΏ½ Ο 2 AP οΏ½ Ο οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β Ο 1 Ο 1 and Ο 2 Ο 2 Ο 2 A 0+ A 1+ A 2+ . . . are in A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . 66 / 444
Stutter-insensitive LT properties stutter5.4-st-ins-prop 2 AP οΏ½ Ο 2 AP οΏ½ Ο : 2 AP οΏ½ Ο οΏ½ οΏ½ οΏ½ stutter equivalence for infinite words Ο 1 Ο 1 , Ο 2 β Ο 1 Ο 2 β Ο 2 β β β β Ο 1 = Ο 2 Ο 1 Ο 1 = Ο 2 = Ο 2 iff there exists an infinite word 2 AP οΏ½ Ο s.t. Ο 1 2 AP οΏ½ Ο 2 AP οΏ½ Ο οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β Ο 1 Ο 1 and Ο 2 Ο 2 Ο 2 A 0+ A 1+ A 2+ . . . are in A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . 2 AP οΏ½ Ο be an LT property. E 2 AP οΏ½ Ο 2 AP οΏ½ Ο οΏ½ οΏ½ οΏ½ Let E β E β E β E E is called 2 AP οΏ½ Ο 2 AP οΏ½ Ο 2 AP οΏ½ Ο : οΏ½ οΏ½ οΏ½ stutter-insensitive iff for all Ο 1 Ο 1 , Ο 2 β Ο 1 Ο 2 β Ο 2 β β β β if Ο 1 β E Ο 1 β E Ο 1 β E and Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 then Ο 2 β E Ο 2 β E Ο 2 β E 67 / 444
Stutter-insensitive LT properties stutter5.4-st-ins-prop 2 AP οΏ½ Ο 2 AP οΏ½ Ο 2 AP οΏ½ Ο : οΏ½ οΏ½ οΏ½ stutter equivalence for infinite words Ο 1 Ο 1 Ο 1 , Ο 2 β Ο 2 β Ο 2 β β β β Ο 1 = Ο 2 Ο 1 Ο 1 = Ο 2 = Ο 2 iff there exists an infinite word 2 AP οΏ½ Ο s.t. Ο 1 2 AP οΏ½ Ο 2 AP οΏ½ Ο οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β A 0 A 1 A 2 . . . β Ο 1 Ο 1 and Ο 2 Ο 2 Ο 2 A 0+ A 1+ A 2+ . . . are in A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . 2 AP οΏ½ Ο be an LT property. E 2 AP οΏ½ Ο 2 AP οΏ½ Ο οΏ½ οΏ½ οΏ½ Let E β E β E β E E is called 2 AP οΏ½ Ο 2 AP οΏ½ Ο 2 AP οΏ½ Ο : οΏ½ οΏ½ οΏ½ stutter-insensitive iff for all Ο 1 Ο 1 , Ο 2 β Ο 1 Ο 2 β Ο 2 β β β β if Ο 1 β E Ο 1 β E Ο 1 β E and Ο 1 Ο 1 Ο 1 = Ο 2 = Ο 2 = Ο 2 then Ο 2 β E Ο 2 β E Ο 2 β E Example: if Ο Ο Ο is an LTL \οΏ½ \οΏ½ formula then \οΏ½ E = Words ( Ο ) E = Words ( Ο ) E = Words ( Ο ) is stutter-insensitive 68 / 444
Stutter-insensitive LT properties stutter5.4-st-ins-prop Let T 1 T 1 T 1 , T 2 T 2 T 2 be two TS and E E E a stutter-insensitive LT-property. Then: T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 | T 2 | T 2 | = E = E = E implies T 1 | T 1 | T 1 | = E = E = E 69 / 444
Stutter-insensitive LT properties stutter5.4-st-ins-prop Let T 1 T 1 T 1 , T 2 T 2 T 2 be two TS and E E E a stutter-insensitive LT-property. Then: T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 | T 2 | T 2 | = E = E = E implies T 1 | T 1 | T 1 | = E = E = E Let T 1 T 1 T 1 , T 2 T 2 T 2 be two TS and Ο Ο Ο an LTL \οΏ½ \οΏ½ formula. \οΏ½ T 1 οΏ½ T 2 T 2 | = Ο T 1 | = Ο T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 | T 2 | = Ο = Ο implies T 1 | T 1 | = Ο = Ο 70 / 444
Stutter-insensitive LT properties stutter5.4-st-ins-prop Let T 1 T 1 T 1 , T 2 T 2 T 2 be two TS and E E E a stutter-insensitive LT-property. Then: T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 | T 2 | T 2 | = E = E = E implies T 1 | T 1 | T 1 | = E = E = E Let T 1 T 1 T 1 , T 2 T 2 be two TS and Ο T 2 Ο an LTL \οΏ½ Ο \οΏ½ formula. \οΏ½ T 1 οΏ½ T 2 T 2 | = Ο T 1 | = Ο T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 | T 2 | = Ο = Ο implies T 1 | T 1 | = Ο = Ο remind: if Ο Ο Ο is an LTL \οΏ½ \οΏ½ formula then \οΏ½ E = Words ( Ο ) E = Words ( Ο ) E = Words ( Ο ) is stutter-insensitive 71 / 444
Overview overview7.4a Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation-Tree Logic (CTL) Equivalences and Abstraction bisimulation, CTL/CTL*-equivalence computing the bisimulation quotient abstraction stutter steps stutter LT relations stutter bisimulation β β β β β β simulation relations 72 / 444
Stutter bisimulation stutter5.4-def-stutter-bis 73 / 444
Stutter bisimulation stutter5.4-def-stutter-bis Let T = ( S , Act , β , S 0 , AP , L ) T = ( S , Act , β , S 0 , AP , L ) T = ( S , Act , β , S 0 , AP , L ) be a TS, possibly with terminal states. 74 / 444
Stutter bisimulation stutter5.4-def-stutter-bis Let T = ( S , Act , β , S 0 , AP , L ) T = ( S , Act , β , S 0 , AP , L ) T = ( S , Act , β , S 0 , AP , L ) be a TS, possibly with terminal states. T A stutter bisimulation for T T is .... 75 / 444
Stutter bisimulation stutter5.4-def-stutter-bis Let T = ( S , Act , β , S 0 , AP , L ) T = ( S , Act , β , S 0 , AP , L ) T = ( S , Act , β , S 0 , AP , L ) be a TS, possibly with terminal states. T R A stutter bisimulation for T T is a binary relation R R on S S S s.t. 76 / 444
Stutter bisimulation stutter5.4-def-stutter-bis Let T = ( S , Act , β , S 0 , AP , L ) T = ( S , Act , β , S 0 , AP , L ) T = ( S , Act , β , S 0 , AP , L ) be a TS, possibly with terminal states. T R A stutter bisimulation for T T is a binary relation R R ( s 1 , s 2 ) β R on S S S s.t. for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : (1) labeling condition (2) simulation condition up to stuttering β s 2 s 2 s 2 can mimick all transitions of of s 1 s 1 s 1 β (3) simulation condition up to stuttering β s 1 s 1 s 1 can mimick all transitions of of s 2 s 2 s 2 β 77 / 444
Stutter bisimulation stutter5.4-def-stutter-bis Let T = ( S , Act , β , S 0 , AP , L ) T = ( S , Act , β , S 0 , AP , L ) T = ( S , Act , β , S 0 , AP , L ) be a TS, possibly with terminal states. T R A stutter bisimulation for T T is a binary relation R R ( s 1 , s 2 ) β R on S S S s.t. for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : L ( s 1 ) = L ( s 2 ) (1) labeling condition: L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) (2) simulation condition up to stuttering β s 2 s 2 s 2 can mimick all transitions of of s 1 s 1 s 1 β (3) simulation condition up to stuttering β s 1 s 1 s 1 can mimick all transitions of of s 2 s 2 s 2 β 78 / 444
Stutter bisimulation stutter5.4-def-stutter-bis Let T = ( S , Act , β , S 0 , AP , L ) T = ( S , Act , β , S 0 , AP , L ) T = ( S , Act , β , S 0 , AP , L ) be a TS, possibly with terminal states. T R A stutter bisimulation for T T is a binary relation R R ( s 1 , s 2 ) β R on S S S s.t. for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : L ( s 1 ) = L ( s 2 ) (1) labeling condition: L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) (2) simulation condition up to stuttering β s 2 s 2 s 2 can mimick all transitions of of s 1 s 1 s 1 β (3) simulation condition up to stuttering β s 1 s 1 s 1 can mimick all transitions of of s 2 s 2 s 2 β 79 / 444
Simulation condition stutter5.4-def-stutter-bis A stutter bisimulation for T T T is a binary relation R R R on S S s.t. for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : ( s 1 , s 2 ) β R S . . . . . . . . . . . . . . . . . . (2) simulation condition up to stuttering s 1 - R R - s 2 R s 1 s 2 s 1 s 2 s β² s β² s β² 1 1 1 80 / 444
Simulation condition stutter5.4-def-stutter-bis A stutter bisimulation for T T T is a binary relation R R R on S S s.t. for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : ( s 1 , s 2 ) β R S . . . . . . . . . . . . . . . . . . (2) simulation condition up to stuttering s 1 - R R R - s 2 s 1 s 2 s 1 s 2 s β² s β² s β² 1 1 1 with ( s β² ( s β² ( s β² 1 , s 2 ) / 1 , s 2 ) / 1 , s 2 ) / β R β R β R 81 / 444
Simulation condition stutter5.4-def-stutter-bis A stutter bisimulation for T T T is a binary relation R R R on S S s.t. for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : S . . . . . . . . . . . . . . . . . . (2) simulation condition up to stuttering s 1 - R R R - s 2 s 1 - R R - s 2 R s 1 s 2 s 1 s 2 s 1 s 2 s 1 s 2 can be u 1 u 1 u 1 completed to s β² s β² s β² . . . 1 1 1 . . . . . . u n u n u n with ( s β² ( s β² ( s β² 1 , s 2 ) / 1 , s 2 ) / 1 , s 2 ) / β R β R β R s β² s β² s β² s β² s β² s β² - R R R - 1 2 1 1 2 2 82 / 444
Simulation condition stutter5.4-def-stutter-bis A stutter bisimulation for T T T is a binary relation R R R on S S s.t. for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : S . . . . . . . . . . . . . . . . . . (2) simulation condition up to stuttering s 1 - R R R - s 2 s 1 - R R - s 2 R s 1 s 2 s 1 s 2 s 1 s 2 s 1 s 2 can be u 1 u 1 u 1 completed to s β² s β² s β² . . . 1 1 1 . . . s 1 - R - u i s 1 - R - u i s 1 - R - u i . . . u n u n u n with ( s β² ( s β² ( s β² 1 , s 2 ) / 1 , s 2 ) / 1 , s 2 ) / β R β R β R s β² s β² s β² s β² s β² s β² - R R R - 1 2 1 1 2 2 83 / 444
Stutter bisimulation for a TS stutter5.4-stbis Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T T is a binary relation R R R on S S S such that for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : (1) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) s 1 β s β² ( s β² for each transition s 1 β s β² s 1 β s β² 1 with ( s β² ( s β² 1 , s 2 ) / β R (2) 1 , s 2 ) / 1 , s 2 ) / β R β R 1 1 s 2 u 1 u 2 . . . u n s β² there exists a path fragment s 2 u 1 u 2 . . . u n s β² s 2 u 1 u 2 . . . u n s β² 2 2 2 . . . s.t. . . . . . . (3) . . . . . . . . . 84 / 444
Stutter bisimulation for a TS stutter5.4-stbis Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T T is a binary relation R R R on S S S such that for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : (1) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) s 1 β s β² ( s β² for each transition s 1 β s β² s 1 β s β² 1 with ( s β² ( s β² 1 , s 2 ) / β R (2) 1 , s 2 ) / 1 , s 2 ) / β R β R 1 1 s 2 u 1 u 2 . . . u n s β² there exists a path fragment s 2 u 1 u 2 . . . u n s β² s 2 u 1 u 2 . . . u n s β² 2 2 2 n β₯ 0 ( s 1 , u i ) β R 1 β€ i β€ n s.t. n β₯ 0 n β₯ 0 and ( s 1 , u i ) β R ( s 1 , u i ) β R for 1 β€ i β€ n 1 β€ i β€ n (3) . . . . . . . . . 85 / 444
Stutter bisimulation for a TS stutter5.4-stbis Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T T is a binary relation R R R on S S S such that for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : (1) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) s 1 β s β² ( s β² for each transition s 1 β s β² s 1 β s β² 1 with ( s β² ( s β² 1 , s 2 ) / β R (2) 1 , s 2 ) / 1 , s 2 ) / β R β R 1 1 s 2 u 1 u 2 . . . u n s β² there exists a path fragment s 2 u 1 u 2 . . . u n s β² s 2 u 1 u 2 . . . u n s β² 2 2 2 n β₯ 0 ( s 1 , u i ) β R 1 β€ i β€ n s.t. n β₯ 0 n β₯ 0 and ( s 1 , u i ) β R ( s 1 , u i ) β R for 1 β€ i β€ n 1 β€ i β€ n (3) symmetric condition 86 / 444
Stutter bisimulation for a TS stutter5.4-stbis Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T T is a binary relation R R R on S S S such that for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : (1) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) s 1 β s β² ( s β² for each transition s 1 β s β² s 1 β s β² 1 with ( s β² ( s β² 1 , s 2 ) / β R (2) 1 , s 2 ) / 1 , s 2 ) / β R β R 1 1 s 2 u 1 u 2 . . . u n s β² there exists a path fragment s 2 u 1 u 2 . . . u n s β² s 2 u 1 u 2 . . . u n s β² 2 2 2 n β₯ 0 ( s 1 , u i ) β R 1 β€ i β€ n s.t. n β₯ 0 n β₯ 0 and ( s 1 , u i ) β R ( s 1 , u i ) β R for 1 β€ i β€ n 1 β€ i β€ n for each transition s 2 β s β² s 2 β s β² s 2 β s β² 2 with ( s 1 , s β² ( s 1 , s β² ( s 1 , s β² (3) 2 ) / 2 ) / 2 ) / β R β R β R 2 2 there exists a path fragment s 1 v 1 v 2 . . . v n s β² s 1 v 1 v 2 . . . v n s β² s 1 v 1 v 2 . . . v n s β² 1 1 1 n β₯ 0 ( v i , s 2 ) β R 1 β€ i β€ n s.t. n β₯ 0 n β₯ 0 and ( v i , s 2 ) β R ( v i , s 2 ) β R for 1 β€ i β€ n 1 β€ i β€ n 87 / 444
β T Stutter bisimulation equivalence β T β T stutter5.4-def-approx 88 / 444
β T Stutter bisimulation equivalence β T β T stutter5.4-def-approx Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T is a binary relation R T R R on S S S such that for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : (1) labeling condition (2) and (3) mutual simulation condition 89 / 444
β T Stutter bisimulation equivalence β T β T stutter5.4-def-approx Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T T is a binary relation R R R on S S S such that for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : (1) labeling condition (2) and (3) mutual simulation condition stutter bisimulation equivalence β T β T β T : 90 / 444
β T Stutter bisimulation equivalence β T β T stutter5.4-def-approx Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T T is a binary relation R R R on S S S such that for all ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R : ( s 1 , s 2 ) β R (1) labeling condition (2) and (3) mutual simulation condition stutter bisimulation equivalence β T β T β T : s 1 β T s 2 s 1 β T s 2 s 1 β T s 2 iff there exists a stutter bisimulation R R R for T T T s.t. ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R 91 / 444
β T β T β T is an equivalence stutter5.4-10 92 / 444
β T β T β T is an equivalence stutter5.4-10 symmetry: if s 1 β T s 2 s 1 β T s 2 s 1 β T s 2 then s 2 β T s 1 s 2 β T s 1 s 2 β T s 1 93 / 444
β T β T β T is an equivalence stutter5.4-10 s 1 β T s 2 s 2 β T s 1 symmetry: if s 1 β T s 2 s 1 β T s 2 then s 2 β T s 1 s 2 β T s 1 proof: R ( s 1 , s 2 ) β R if R R is a stutter bisimulation with ( s 1 , s 2 ) β R ( s 1 , s 2 ) β R then R β 1 = R β 1 = R β 1 = οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ ( t 2 , t 1 ) : ( t 1 , t 2 ) β R ( t 2 , t 1 ) : ( t 1 , t 2 ) β R ( t 2 , t 1 ) : ( t 1 , t 2 ) β R is a stutter bisimulation that contains ( s 2 , s 1 ) ( s 2 , s 1 ) ( s 2 , s 1 ). 94 / 444
β T β T β T is an equivalence stutter5.4-10 symmetry: if s 1 β T s 2 s 1 β T s 2 s 1 β T s 2 then s 2 β T s 1 s 2 β T s 1 s 2 β T s 1 s β T s reflexivity: s β T s s β T s for all states s s s 95 / 444
β T β T β T is an equivalence stutter5.4-10 symmetry: if s 1 β T s 2 s 1 β T s 2 s 1 β T s 2 then s 2 β T s 1 s 2 β T s 1 s 2 β T s 1 s β T s reflexivity: s β T s s β T s for all states s s s proof: οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ R = ( s , s ) : s β S R = R = ( s , s ) : s β S ( s , s ) : s β S is a stutter bisimulation 96 / 444
β T β T β T is an equivalence stutter5.4-10 symmetry: if s 1 β T s 2 s 1 β T s 2 s 1 β T s 2 then s 2 β T s 1 s 2 β T s 1 s 2 β T s 1 s β T s reflexivity: s β T s s β T s for all states s s s s 1 β T s 2 s 2 β T s 3 s 1 β T s 3 transitivity: s 1 β T s 2 s 1 β T s 2 and s 2 β T s 3 s 2 β T s 3 implies s 1 β T s 3 s 1 β T s 3 97 / 444
β T β T β T is an equivalence stutter5.4-10 symmetry: if s 1 β T s 2 s 1 β T s 2 s 1 β T s 2 then s 2 β T s 1 s 2 β T s 1 s 2 β T s 1 s β T s reflexivity: s β T s s β T s for all states s s s s 1 β T s 2 s 2 β T s 3 s 1 β T s 3 transitivity: s 1 β T s 2 s 1 β T s 2 and s 2 β T s 3 s 2 β T s 3 implies s 1 β T s 3 s 1 β T s 3 Proof: Let R 1 , 2 R 1 , 2 R 1 , 2 and R 2 , 3 R 2 , 3 R 2 , 3 be stutter bisimulations s.t. ( s 1 , s 2 ) β R 1 , 2 , ( s 2 , s 3 ) β R 2 , 3 ( s 1 , s 2 ) β R 1 , 2 , ( s 2 , s 3 ) β R 2 , 3 ( s 1 , s 2 ) β R 1 , 2 , ( s 2 , s 3 ) β R 2 , 3 R = R 1 , 2 β¦ R 2 , 3 Show that R = R 1 , 2 β¦ R 2 , 3 R = R 1 , 2 β¦ R 2 , 3 is a stutter bisimulation. 98 / 444
s 1 s 1 s 1 R 1 , 2 s 2 s 2 s 2 R 2 , 3 s 3 s 3 s 3 R 1 , 2 R 1 , 2 R 2 , 3 R 2 , 3 s β² s β² s β² 1 1 1 99 / 444
s 1 s 1 s 1 R 1 , 2 s 2 s 2 s 2 R 2 , 3 s 3 s 3 s 3 R 1 , 2 R 1 , 2 R 2 , 3 R 2 , 3 u 1 u 1 u 1 . . . . . . . . . u j β 1 u j β 1 u j β 1 u j u j u j . . . . . . . . . u k β 1 u k β 1 u k β 1 u k u k u k . . . . . . . . . u m u m u m s β² s β² s β² s β² s β² s β² R 1 , 2 R 1 , 2 R 1 , 2 1 2 1 1 2 2 100 / 444
Recommend
More recommend