overview

Overview overview7.4 Introduction Modelling parallel systems - PowerPoint PPT Presentation

Overview overview7.4 Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation-Tree Logic Equivalences and Abstraction bisimulation CTL, CTL*-equivalence computing the


  1. Analysis by abstraction from stutter steps stutter5.4-4 simplified TS β„“ 1 x =2 y =4 β„“ 1 x =2 y =4 β„“ 1 x =2 y =4 z =3 z =3 z =3 representation β„“ 2 x =1 y =4 z =3 β„“ 2 x =1 y =4 β„“ 2 x =1 y =4 z =3 z =3 z =3 z =3 z =3 β„“ 3 x =1 y =2 β„“ 3 x =1 y =2 β„“ 3 x =1 y =2 z =3 z =3 z =3 β„“ 1 x =1 y =2 β„“ 1 x =1 y =2 β„“ 1 x =1 y =2 z =1 z =1 z =1 z =1 z =1 z =1 β„“ 2 x =2 y =2 z =1 β„“ 2 x =2 y =2 β„“ 2 x =2 y =2 z =1 z =1 z =0 z =0 z =0 β„“ 3 x =2 y =1 z =1 β„“ 3 x =2 y =1 β„“ 3 x =2 y =1 z =1 z =1 . . . . . . . . . β„“ 1 x =2 y =1 z =0 β„“ 1 x =2 y =1 z =0 β„“ 1 x =2 y =1 z =0 . . . . . . . . . 21 / 444

  2. Overview overview7.4-stutter-trace Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation-Tree Logic (CTL) Equivalences and Abstraction bisimulation, CTL/CTL*-equivalence computing the bisimulation quotient abstraction stutter steps stutter LT relations ← ← ← βˆ’ βˆ’ βˆ’ stutter bisimulation simulation relations 22 / 444

  3. Remind: trace relations stutter5.4-5-remind 23 / 444

  4. Remind: trace relations stutter5.4-5-remind trace equivalence for paths Ο€ 1 Ο€ 1 Ο€ 1 , Ο€ 2 Ο€ 2 Ο€ 2 are trace equivalent iff trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace ( Ο€ 1 ) = trace ( Ο€ 2 ) 24 / 444

  5. Remind: trace relations stutter5.4-5-remind trace equivalence for paths Ο€ 1 Ο€ 1 Ο€ 1 , Ο€ 2 Ο€ 2 Ο€ 2 are trace equivalent iff trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace inclusion for TS: Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) βˆ€ Ο€ 1 ∈ Traces ( T 1 ) βˆ€ Ο€ 1 ∈ Traces ( T 1 ) βˆ€ Ο€ 1 ∈ Traces ( T 1 ) βˆƒ Ο€ 2 ∈ Traces ( T 2 ) βˆƒ Ο€ 2 ∈ Traces ( T 2 ) βˆƒ Ο€ 2 ∈ Traces ( T 2 ) s.t. Ο€ 1 Ο€ 1 Ο€ 1 , Ο€ 2 Ο€ 2 Ο€ 2 are trace equivalent 25 / 444

  6. Remind: trace relations stutter5.4-5-remind trace equivalence for paths Ο€ 1 Ο€ 1 Ο€ 1 , Ο€ 2 Ο€ 2 Ο€ 2 are trace equivalent iff trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace inclusion for TS: Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) βˆ€ Ο€ 1 ∈ Traces ( T 1 ) βˆ€ Ο€ 1 ∈ Traces ( T 1 ) βˆ€ Ο€ 1 ∈ Traces ( T 1 ) βˆƒ Ο€ 2 ∈ Traces ( T 2 ) βˆƒ Ο€ 2 ∈ Traces ( T 2 ) βˆƒ Ο€ 2 ∈ Traces ( T 2 ) s.t. Ο€ 1 Ο€ 1 Ο€ 1 , Ο€ 2 Ο€ 2 Ο€ 2 are trace equivalent trace equivalence for TS: Traces ( T 1 ) βŠ† Traces ( T 2 ) ∧ Traces ( T 2 ) βŠ† Traces ( T 1 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) ∧ ∧ Traces ( T 2 ) βŠ† Traces ( T 1 ) Traces ( T 2 ) βŠ† Traces ( T 1 ) 26 / 444

  7. Remind: trace relations stutter5.4-5-remind trace equivalence for paths Ο€ 1 Ο€ 1 Ο€ 1 , Ο€ 2 Ο€ 2 Ο€ 2 are trace equivalent iff trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace inclusion for TS: Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) βˆ€ Ο€ 1 ∈ Traces ( T 1 ) βˆ€ Ο€ 1 ∈ Traces ( T 1 ) βˆ€ Ο€ 1 ∈ Traces ( T 1 ) βˆƒ Ο€ 2 ∈ Traces ( T 2 ) βˆƒ Ο€ 2 ∈ Traces ( T 2 ) βˆƒ Ο€ 2 ∈ Traces ( T 2 ) s.t. Ο€ 1 Ο€ 1 Ο€ 1 , Ο€ 2 Ο€ 2 Ο€ 2 are trace equivalent trace equivalence for TS: Traces ( T 1 ) βŠ† Traces ( T 2 ) ∧ Traces ( T 2 ) βŠ† Traces ( T 1 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) ∧ ∧ Traces ( T 2 ) βŠ† Traces ( T 1 ) Traces ( T 2 ) βŠ† Traces ( T 1 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) iff for each LT property E E E : T 2 | T 2 | T 2 | = E = E = E implies T 1 | T 1 | T 1 | = E = E = E 27 / 444

  8. Remind: trace relations stutter5.4-5-remind trace equivalence for paths Ο€ 1 Ο€ 1 Ο€ 1 , Ο€ 2 Ο€ 2 Ο€ 2 are trace equivalent iff trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace ( Ο€ 1 ) = trace ( Ο€ 2 ) trace inclusion for TS: Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) βˆ€ Ο€ 1 ∈ Traces ( T 1 ) βˆ€ Ο€ 1 ∈ Traces ( T 1 ) βˆ€ Ο€ 1 ∈ Traces ( T 1 ) βˆƒ Ο€ 2 ∈ Traces ( T 2 ) βˆƒ Ο€ 2 ∈ Traces ( T 2 ) βˆƒ Ο€ 2 ∈ Traces ( T 2 ) s.t. Ο€ 1 Ο€ 1 Ο€ 1 , Ο€ 2 Ο€ 2 Ο€ 2 are trace equivalent trace equivalence for TS: Traces ( T 1 ) βŠ† Traces ( T 2 ) ∧ Traces ( T 2 ) βŠ† Traces ( T 1 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) ∧ ∧ Traces ( T 2 ) βŠ† Traces ( T 1 ) Traces ( T 2 ) βŠ† Traces ( T 1 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) iff for each LT property E E E : T 2 | T 2 | T 2 | = E = E implies T 1 | = E T 1 | T 1 | = E = E = E οΏ½ οΏ½ οΏ½    trace equivalent TS satisfy the same LTL formulas 28 / 444

  9. Stutter equivalence for paths stutter5.4-stutter-equiv-paths 29 / 444

  10. Stutter equivalence for paths stutter5.4-stutter-equiv-paths stutter equivalence for infinite path fragments: 30 / 444

  11. Stutter equivalence for paths stutter5.4-stutter-equiv-paths stutter equivalence for infinite path fragments: βˆ† βˆ† βˆ† Ο€ 1 = Ο€ 2 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 iff there exists an infinite word 2 AP οΏ½ Ο‰ s.t. the 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ traces of Ο€ 1 Ο€ 1 Ο€ 1 and Ο€ 2 Ο€ 2 Ο€ 2 are of the form A 0 . . . A 0 A 1 . . . A 1 A 2 . . . A 2 . . . A 0 . . . A 0 A 1 . . . A 1 A 2 . . . A 2 . . . A 0 . . . A 0 A 1 . . . A 1 A 2 . . . A 2 . . . 31 / 444

  12. Stutter equivalence for paths stutter5.4-stutter-equiv-paths stutter equivalence for infinite path fragments: βˆ† βˆ† βˆ† Ο€ 1 = Ο€ 2 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 iff there exists an infinite word 2 AP οΏ½ Ο‰ s.t. the 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ traces of Ο€ 1 Ο€ 1 Ο€ 1 and Ο€ 2 Ο€ 2 Ο€ 2 are of the form A n 0 A n 0 A n 0 0 A n 1 0 A n 1 0 A n 1 1 A n 2 1 A n 2 1 A n 2 2 . . . 2 . . . 2 . . . n 0 , n 1 , n 2 , . . . β‰₯ 1 where n 0 , n 1 , n 2 , . . . n 0 , n 1 , n 2 , . . . are natural numbers β‰₯ 1 β‰₯ 1 32 / 444

  13. Stutter equivalence for paths stutter5.4-stutter-equiv-paths stutter equivalence for infinite path fragments: βˆ† βˆ† βˆ† Ο€ 1 = Ο€ 2 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 iff there exists an infinite word 2 AP οΏ½ Ο‰ s.t. the 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ traces of Ο€ 1 Ο€ 1 Ο€ 1 and Ο€ 2 Ο€ 2 Ο€ 2 are of the form A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . 33 / 444

  14. Stutter equivalence for paths stutter5.4-stutter-equiv-paths stutter equivalence for infinite path fragments: βˆ† βˆ† βˆ† Ο€ 1 = Ο€ 2 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 iff there exists an infinite word 2 AP οΏ½ Ο‰ s.t. the 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ traces of Ο€ 1 Ο€ 1 Ο€ 1 and Ο€ 2 Ο€ 2 Ο€ 2 are of the form A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . stutter equivalence for finite path fragments: βˆ† βˆ† βˆ† Ο€ 1 Λ† Ο€ 1 Ο€ 1 Λ† Λ† = Λ† = Λ† = Λ† Ο€ 2 Ο€ 2 Ο€ 2 iff there exists a finite word 2 AP οΏ½ + s.t. 2 AP οΏ½ + 2 AP οΏ½ + οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . A n ∈ A 0 A 1 A 2 . . . A n ∈ A 0 A 1 A 2 . . . A n ∈ the traces of Λ† Ο€ 1 Ο€ 1 Λ† Λ† Ο€ 1 and Λ† Ο€ 2 Ο€ 2 Λ† Λ† Ο€ 2 are in A 0+ A 1+ A 2+ . . . A n + A 0+ A 1+ A 2+ . . . A n + A 0+ A 1+ A 2+ . . . A n + 34 / 444

  15. Stutter trace relations for TS stutter5.4-5 stutter equivalence for infinite path fragments: βˆ† βˆ† βˆ† Ο€ 1 = Ο€ 2 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 iff there exists an infinite word 2 AP οΏ½ Ο‰ s.t. the 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ traces of Ο€ 1 Ο€ 1 Ο€ 1 and Ο€ 2 Ο€ 2 Ο€ 2 are of the form A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . 35 / 444

  16. Stutter trace relations for TS stutter5.4-5 stutter equivalence for infinite path fragments: βˆ† βˆ† βˆ† Ο€ 1 = Ο€ 2 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 iff there exists an infinite word 2 AP οΏ½ Ο‰ s.t. the 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ traces of Ο€ 1 Ο€ 1 Ο€ 1 and Ο€ 2 Ο€ 2 Ο€ 2 are of the form A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . stutter trace inclusion for transition systems: T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff for all paths Ο€ 1 Ο€ 1 Ο€ 1 of T 1 T 1 T 1 there exists a path Ο€ 2 Ο€ 2 of T 2 Ο€ 2 T 2 T 2 βˆ† βˆ† βˆ† s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 36 / 444

  17. Example: stutter trace inclusion οΏ½ οΏ½ οΏ½ stutter5.4-5-ex T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆ† βˆ† βˆ† s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 = βˆ… = βˆ… = βˆ… = { a } = { a } = { a } = { b } = { b } = { b } 37 / 444

  18. Example: stutter trace inclusion οΏ½ οΏ½ οΏ½ stutter5.4-5-ex T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆ† βˆ† βˆ† s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 = βˆ… = βˆ… = βˆ… οΏ½ οΏ½ οΏ½ = { a } = { a } = { a } = { b } = { b } = { b } 38 / 444

  19. Example: stutter trace inclusion οΏ½ οΏ½ οΏ½ stutter5.4-5-ex T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆ† βˆ† βˆ† s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 = βˆ… = βˆ… = βˆ… οΏ½ οΏ½ οΏ½ = { a } = { a } = { a } = { b } = { b } = { b } ( βˆ… + { b } + { a } + ) Ο‰ all traces have the form ( βˆ… + { b } + { a } + ) Ο‰ ( βˆ… + { b } + { a } + ) Ο‰ or ( βˆ… + { b } + { a } + ) βˆ— βˆ… Ο‰ ( βˆ… + { b } + { a } + ) βˆ— βˆ… Ο‰ ( βˆ… + { b } + { a } + ) βˆ— βˆ… Ο‰ 39 / 444

  20. Stutter trace inclusion and LTL stutter5.4-5-LTL T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆ† βˆ† βˆ† s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 Does stutter trace inclusion preserve LTL properties? 40 / 444

  21. Stutter trace inclusion and LTL stutter5.4-5-LTL T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆ† βˆ† βˆ† s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 Does stutter trace inclusion preserve LTL properties? οΏ½ οΏ½ οΏ½       Ο• i.e., for all LTL formulas Ο• Ο• : T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 ∧ ∧ ∧ T 2 | T 2 | T 2 | = Ο• = Ο• = Ο• implies T 1 | T 1 | T 1 | = Ο• = Ο• = Ο• 41 / 444

  22. Stutter trace inclusion and LTL stutter5.4-5-LTL T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆ† βˆ† βˆ† s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 Does stutter trace inclusion preserve LTL properties? οΏ½ οΏ½ οΏ½       Ο• i.e., for all LTL formulas Ο• Ο• : T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 ∧ ∧ ∧ T 2 | T 2 | T 2 | = Ο• = Ο• = Ο• implies T 1 | T 1 | T 1 | = Ο• = Ο• = Ο• answer: no 42 / 444

  23. Stutter trace inclusion and LTL stutter5.4-5-LTL T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆ† βˆ† βˆ† s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 Does stutter trace inclusion preserve LTL properties? οΏ½ οΏ½ οΏ½       Ο• i.e., for all LTL formulas Ο• Ο• : T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 ∧ ∧ ∧ T 2 | T 2 | T 2 | = Ο• = Ο• = Ο• implies T 1 | T 1 | T 1 | = Ο• = Ο• = Ο• answer: no Example: LTL formulas of the form οΏ½ a οΏ½ a οΏ½ a 43 / 444

  24. Stutter trace inclusion and LTL \οΏ½ \οΏ½ \οΏ½ stutter5.4-5-thm T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆ† βˆ† βˆ† s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 Let T 1 T 1 T 1 and T 2 T 2 T 2 are TS without terminal states and Ο• Ο• Ο• an LTL \οΏ½ \οΏ½ formula. Then: \οΏ½ T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 ∧ ∧ ∧ T 2 | T 2 | T 2 | = Ο• = Ο• = Ο• implies T 1 | T 1 | T 1 | = Ο• = Ο• = Ο• 44 / 444

  25. Stutter trace inclusion and LTL \οΏ½ \οΏ½ \οΏ½ stutter5.4-5-thm T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 iff βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆ† βˆ† βˆ† s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 Let T 1 T 1 T 1 and T 2 T 2 T 2 are TS without terminal states and Ο• Ο• Ο• an LTL \οΏ½ \οΏ½ formula. Then: \οΏ½ T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 ∧ ∧ ∧ T 2 | T 2 | T 2 | = Ο• = Ο• = Ο• implies T 1 | T 1 | T 1 | = Ο• = Ο• = Ο• where LTL \οΏ½ \οΏ½ = = = LTL without the next operator οΏ½ οΏ½ οΏ½ \οΏ½ 45 / 444

  26. βˆ† βˆ† βˆ† = Stutter trace equivalence = = for TS stutter5.4-5a 46 / 444

  27. βˆ† βˆ† βˆ† = Stutter trace equivalence = = for TS stutter5.4-5a stutter trace inclusion T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 βˆ† βˆ† βˆ† βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 47 / 444

  28. βˆ† βˆ† βˆ† = Stutter trace equivalence = = for TS stutter5.4-5a stutter trace inclusion T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 βˆ† βˆ† βˆ† βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 stutter trace equivalence βˆ† βˆ† βˆ† T 1 T 1 T 1 = T 2 = T 2 = T 2 iff T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 οΏ½ T 1 T 2 οΏ½ T 1 T 2 οΏ½ T 1 48 / 444

  29. βˆ† βˆ† βˆ† = Stutter trace equivalence = = for TS stutter5.4-5a stutter trace inclusion T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 βˆ† βˆ† βˆ† βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 stutter trace equivalence βˆ† βˆ† βˆ† T 1 T 1 T 1 = T 2 = T 2 = T 2 iff T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 οΏ½ T 1 T 2 οΏ½ T 1 T 2 οΏ½ T 1 οΏ½ οΏ½ οΏ½    kernel of οΏ½ οΏ½ οΏ½ , i.e., coarsest equivalence that refines οΏ½ οΏ½ οΏ½ 49 / 444

  30. βˆ† βˆ† βˆ† = Stutter trace equivalence = = for TS stutter5.4-5a stutter trace inclusion T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 βˆ† βˆ† βˆ† βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 For all LTL \οΏ½ \οΏ½ formulas Ο• Ο• Ο• : \οΏ½ T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 ∧ ∧ ∧ T 2 | T 2 | T 2 | = Ο• = Ο• = Ο• implies T 1 | T 1 | T 1 | = Ο• = Ο• = Ο• stutter trace equivalence βˆ† βˆ† βˆ† T 1 T 1 T 1 = T 2 = T 2 = T 2 iff T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 οΏ½ T 1 T 2 οΏ½ T 1 T 2 οΏ½ T 1 οΏ½ οΏ½ οΏ½    kernel of οΏ½ οΏ½ οΏ½ , i.e., coarsest equivalence that refines οΏ½ οΏ½ οΏ½ 50 / 444

  31. βˆ† βˆ† βˆ† = Stutter trace equivalence = = for TS stutter5.4-5a stutter trace inclusion T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 βˆ† βˆ† βˆ† βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆ€ Ο€ 1 ∈ Paths ( T 1 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) βˆƒ Ο€ 2 ∈ Paths ( T 2 ) s.t. Ο€ 1 Ο€ 1 Ο€ 1 = Ο€ 2 = Ο€ 2 = Ο€ 2 For all LTL \οΏ½ \οΏ½ formulas Ο• Ο• Ο• : \οΏ½ T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 ∧ ∧ ∧ T 2 | T 2 | T 2 | = Ο• = Ο• = Ο• implies T 1 | T 1 | T 1 | = Ο• = Ο• = Ο• stutter trace equivalence βˆ† βˆ† βˆ† T 1 T 1 T 1 = T 2 = T 2 = T 2 iff T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 οΏ½ T 1 T 2 οΏ½ T 1 T 2 οΏ½ T 1 βˆ† βˆ† βˆ† If T 1 T 1 T 1 = T 2 = T 2 = T 2 then T 1 T 1 T 1 and T 2 T 2 T 2 are LTL \οΏ½ \οΏ½ equivalent. \οΏ½ 51 / 444

  32. Correct or wrong? stutter5.4-13a βˆ† βˆ† βˆ† = = = 52 / 444

  33. Correct or wrong? stutter5.4-13a βˆ† βˆ† βˆ† = = = correct 53 / 444

  34. Correct or wrong? stutter5.4-13a βˆ† βˆ† βˆ† = = = correct T 2 have the form β€’ + + β€’ + + or β€’ Ο‰ Ο‰ Ο‰ + + The traces of T 1 T 1 T 1 and T 2 T 2 54 / 444

  35. Correct or wrong? stutter5.4-13a βˆ† βˆ† βˆ† = = = correct T 2 have the form β€’ + + β€’ + + or β€’ Ο‰ Ο‰ Ο‰ + + The traces of T 1 T 1 T 1 and T 2 T 2 βˆ† βˆ† βˆ† = = = 55 / 444

  36. Correct or wrong? stutter5.4-13a βˆ† βˆ† βˆ† = = = correct T 2 have the form β€’ + + β€’ + + or β€’ Ο‰ Ο‰ Ο‰ + + The traces of T 1 T 1 T 1 and T 2 T 2 wrong βˆ† βˆ† βˆ† = = = 56 / 444

  37. Correct or wrong? stutter5.4-13a βˆ† βˆ† βˆ† = = = correct T 2 have the form β€’ + + β€’ + + or β€’ Ο‰ Ο‰ Ο‰ + + The traces of T 1 T 1 T 1 and T 2 T 2 wrong βˆ† βˆ† βˆ† = = = T 1 has a finite trace β€’ + + β€’ , while T 2 + T 1 T 2 T 1 T 2 has not 57 / 444

  38. Correct or wrong? stutter5.4-13b If T 1 T 1 T 1 and T 2 T 2 T 2 are TS over AP AP AP then: βˆ† βˆ† βˆ† T 1 ∼ T 2 T 1 = T 2 T 1 ∼ T 2 T 1 ∼ T 2 implies T 1 T 1 = T 2 = T 2 58 / 444

  39. Correct or wrong? stutter5.4-13b If T 1 T 1 T 1 and T 2 T 2 T 2 are TS over AP AP AP then: βˆ† βˆ† βˆ† T 1 ∼ T 2 T 1 = T 2 T 1 ∼ T 2 T 1 ∼ T 2 implies T 1 T 1 = T 2 = T 2 Φ€ ΥΏ Φ€ Φ€ ΥΏ ΥΏ bisimulation stutter trace equivalence equivalence 59 / 444

  40. Correct or wrong? stutter5.4-13b If T 1 T 1 T 1 and T 2 T 2 T 2 are TS over AP AP AP then: βˆ† βˆ† βˆ† T 1 ∼ T 2 T 1 = T 2 T 1 ∼ T 2 T 1 ∼ T 2 implies T 1 T 1 = T 2 = T 2 Φ€ ΥΏ Φ€ Φ€ ΥΏ ΥΏ bisimulation stutter trace equivalence equivalence correct 60 / 444

  41. Correct or wrong? stutter5.4-13b If T 1 T 1 T 1 and T 2 T 2 T 2 are TS over AP AP AP then: βˆ† βˆ† βˆ† T 1 ∼ T 2 T 1 = T 2 T 1 ∼ T 2 T 1 ∼ T 2 implies T 1 T 1 = T 2 = T 2 Φ€ ΥΏ Φ€ Φ€ ΥΏ ΥΏ bisimulation stutter trace equivalence equivalence correct , as β€’ T 1 ∼ T 2 T 1 ∼ T 2 T 1 ∼ T 2 implies Traces ( T 1 ) = Traces ( T 2 ) Traces ( T 1 ) = Traces ( T 2 ) Traces ( T 1 ) = Traces ( T 2 ) β€’ trace equivalent paths are stutter trace equivalent 61 / 444

  42. Correct or wrong? stutter5.4-13b If T 1 T 1 T 1 and T 2 T 2 T 2 are TS over AP AP AP then: βˆ† βˆ† βˆ† T 1 ∼ T 2 T 1 = T 2 T 1 ∼ T 2 T 1 ∼ T 2 implies T 1 T 1 = T 2 = T 2 Φ€ ΥΏ Φ€ Φ€ ΥΏ ΥΏ bisimulation stutter trace equivalence equivalence correct , as β€’ T 1 ∼ T 2 T 1 ∼ T 2 T 1 ∼ T 2 implies Traces ( T 1 ) = Traces ( T 2 ) Traces ( T 1 ) = Traces ( T 2 ) Traces ( T 1 ) = Traces ( T 2 ) β€’ trace equivalent paths are stutter trace equivalent obviously: Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) Traces ( T 1 ) βŠ† Traces ( T 2 ) implies T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 62 / 444

  43. Stutter-insensitive LT properties stutter5.4-st-ins-prop 63 / 444

  44. Stutter-insensitive LT properties stutter5.4-st-ins-prop stutter equivalence for infinite words 64 / 444

  45. Stutter-insensitive LT properties stutter5.4-st-ins-prop 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ : οΏ½ οΏ½ οΏ½ stutter equivalence for infinite words Οƒ 1 Οƒ 1 Οƒ 1 , Οƒ 2 ∈ Οƒ 2 ∈ Οƒ 2 ∈ 65 / 444

  46. Stutter-insensitive LT properties stutter5.4-st-ins-prop 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ : οΏ½ οΏ½ οΏ½ stutter equivalence for infinite words Οƒ 1 Οƒ 1 Οƒ 1 , Οƒ 2 ∈ Οƒ 2 ∈ Οƒ 2 ∈ βˆ† βˆ† βˆ† Οƒ 1 = Οƒ 2 Οƒ 1 Οƒ 1 = Οƒ 2 = Οƒ 2 iff there exists an infinite word 2 AP οΏ½ Ο‰ s.t. Οƒ 1 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ Οƒ 1 Οƒ 1 and Οƒ 2 Οƒ 2 Οƒ 2 A 0+ A 1+ A 2+ . . . are in A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . 66 / 444

  47. Stutter-insensitive LT properties stutter5.4-st-ins-prop 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ : 2 AP οΏ½ Ο‰ οΏ½ οΏ½ οΏ½ stutter equivalence for infinite words Οƒ 1 Οƒ 1 , Οƒ 2 ∈ Οƒ 1 Οƒ 2 ∈ Οƒ 2 ∈ βˆ† βˆ† βˆ† Οƒ 1 = Οƒ 2 Οƒ 1 Οƒ 1 = Οƒ 2 = Οƒ 2 iff there exists an infinite word 2 AP οΏ½ Ο‰ s.t. Οƒ 1 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ Οƒ 1 Οƒ 1 and Οƒ 2 Οƒ 2 Οƒ 2 A 0+ A 1+ A 2+ . . . are in A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . 2 AP οΏ½ Ο‰ be an LT property. E 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ οΏ½ οΏ½ οΏ½ Let E βŠ† E βŠ† E βŠ† E E is called 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ : οΏ½ οΏ½ οΏ½ stutter-insensitive iff for all Οƒ 1 Οƒ 1 , Οƒ 2 ∈ Οƒ 1 Οƒ 2 ∈ Οƒ 2 ∈ βˆ† βˆ† βˆ† if Οƒ 1 ∈ E Οƒ 1 ∈ E Οƒ 1 ∈ E and Οƒ 1 Οƒ 1 Οƒ 1 = Οƒ 2 = Οƒ 2 = Οƒ 2 then Οƒ 2 ∈ E Οƒ 2 ∈ E Οƒ 2 ∈ E 67 / 444

  48. Stutter-insensitive LT properties stutter5.4-st-ins-prop 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ : οΏ½ οΏ½ οΏ½ stutter equivalence for infinite words Οƒ 1 Οƒ 1 Οƒ 1 , Οƒ 2 ∈ Οƒ 2 ∈ Οƒ 2 ∈ βˆ† βˆ† βˆ† Οƒ 1 = Οƒ 2 Οƒ 1 Οƒ 1 = Οƒ 2 = Οƒ 2 iff there exists an infinite word 2 AP οΏ½ Ο‰ s.t. Οƒ 1 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ οΏ½ οΏ½ οΏ½ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ A 0 A 1 A 2 . . . ∈ Οƒ 1 Οƒ 1 and Οƒ 2 Οƒ 2 Οƒ 2 A 0+ A 1+ A 2+ . . . are in A 0+ A 1+ A 2+ . . . A 0+ A 1+ A 2+ . . . 2 AP οΏ½ Ο‰ be an LT property. E 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ οΏ½ οΏ½ οΏ½ Let E βŠ† E βŠ† E βŠ† E E is called 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ 2 AP οΏ½ Ο‰ : οΏ½ οΏ½ οΏ½ stutter-insensitive iff for all Οƒ 1 Οƒ 1 , Οƒ 2 ∈ Οƒ 1 Οƒ 2 ∈ Οƒ 2 ∈ βˆ† βˆ† βˆ† if Οƒ 1 ∈ E Οƒ 1 ∈ E Οƒ 1 ∈ E and Οƒ 1 Οƒ 1 Οƒ 1 = Οƒ 2 = Οƒ 2 = Οƒ 2 then Οƒ 2 ∈ E Οƒ 2 ∈ E Οƒ 2 ∈ E Example: if Ο• Ο• Ο• is an LTL \οΏ½ \οΏ½ formula then \οΏ½ E = Words ( Ο• ) E = Words ( Ο• ) E = Words ( Ο• ) is stutter-insensitive 68 / 444

  49. Stutter-insensitive LT properties stutter5.4-st-ins-prop Let T 1 T 1 T 1 , T 2 T 2 T 2 be two TS and E E E a stutter-insensitive LT-property. Then: T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 | T 2 | T 2 | = E = E = E implies T 1 | T 1 | T 1 | = E = E = E 69 / 444

  50. Stutter-insensitive LT properties stutter5.4-st-ins-prop Let T 1 T 1 T 1 , T 2 T 2 T 2 be two TS and E E E a stutter-insensitive LT-property. Then: T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 | T 2 | T 2 | = E = E = E implies T 1 | T 1 | T 1 | = E = E = E Let T 1 T 1 T 1 , T 2 T 2 T 2 be two TS and Ο• Ο• Ο• an LTL \οΏ½ \οΏ½ formula. \οΏ½ T 1 οΏ½ T 2 T 2 | = Ο• T 1 | = Ο• T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 | T 2 | = Ο• = Ο• implies T 1 | T 1 | = Ο• = Ο• 70 / 444

  51. Stutter-insensitive LT properties stutter5.4-st-ins-prop Let T 1 T 1 T 1 , T 2 T 2 T 2 be two TS and E E E a stutter-insensitive LT-property. Then: T 1 οΏ½ T 2 T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 | T 2 | T 2 | = E = E = E implies T 1 | T 1 | T 1 | = E = E = E Let T 1 T 1 T 1 , T 2 T 2 be two TS and Ο• T 2 Ο• an LTL \οΏ½ Ο• \οΏ½ formula. \οΏ½ T 1 οΏ½ T 2 T 2 | = Ο• T 1 | = Ο• T 1 οΏ½ T 2 T 1 οΏ½ T 2 and T 2 | T 2 | = Ο• = Ο• implies T 1 | T 1 | = Ο• = Ο• remind: if Ο• Ο• Ο• is an LTL \οΏ½ \οΏ½ formula then \οΏ½ E = Words ( Ο• ) E = Words ( Ο• ) E = Words ( Ο• ) is stutter-insensitive 71 / 444

  52. Overview overview7.4a Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation-Tree Logic (CTL) Equivalences and Abstraction bisimulation, CTL/CTL*-equivalence computing the bisimulation quotient abstraction stutter steps stutter LT relations stutter bisimulation ← ← ← βˆ’ βˆ’ βˆ’ simulation relations 72 / 444

  53. Stutter bisimulation stutter5.4-def-stutter-bis 73 / 444

  54. Stutter bisimulation stutter5.4-def-stutter-bis Let T = ( S , Act , β†’ , S 0 , AP , L ) T = ( S , Act , β†’ , S 0 , AP , L ) T = ( S , Act , β†’ , S 0 , AP , L ) be a TS, possibly with terminal states. 74 / 444

  55. Stutter bisimulation stutter5.4-def-stutter-bis Let T = ( S , Act , β†’ , S 0 , AP , L ) T = ( S , Act , β†’ , S 0 , AP , L ) T = ( S , Act , β†’ , S 0 , AP , L ) be a TS, possibly with terminal states. T A stutter bisimulation for T T is .... 75 / 444

  56. Stutter bisimulation stutter5.4-def-stutter-bis Let T = ( S , Act , β†’ , S 0 , AP , L ) T = ( S , Act , β†’ , S 0 , AP , L ) T = ( S , Act , β†’ , S 0 , AP , L ) be a TS, possibly with terminal states. T R A stutter bisimulation for T T is a binary relation R R on S S S s.t. 76 / 444

  57. Stutter bisimulation stutter5.4-def-stutter-bis Let T = ( S , Act , β†’ , S 0 , AP , L ) T = ( S , Act , β†’ , S 0 , AP , L ) T = ( S , Act , β†’ , S 0 , AP , L ) be a TS, possibly with terminal states. T R A stutter bisimulation for T T is a binary relation R R ( s 1 , s 2 ) ∈ R on S S S s.t. for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : (1) labeling condition (2) simulation condition up to stuttering β€œ s 2 s 2 s 2 can mimick all transitions of of s 1 s 1 s 1 ” (3) simulation condition up to stuttering β€œ s 1 s 1 s 1 can mimick all transitions of of s 2 s 2 s 2 ” 77 / 444

  58. Stutter bisimulation stutter5.4-def-stutter-bis Let T = ( S , Act , β†’ , S 0 , AP , L ) T = ( S , Act , β†’ , S 0 , AP , L ) T = ( S , Act , β†’ , S 0 , AP , L ) be a TS, possibly with terminal states. T R A stutter bisimulation for T T is a binary relation R R ( s 1 , s 2 ) ∈ R on S S S s.t. for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : L ( s 1 ) = L ( s 2 ) (1) labeling condition: L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) (2) simulation condition up to stuttering β€œ s 2 s 2 s 2 can mimick all transitions of of s 1 s 1 s 1 ” (3) simulation condition up to stuttering β€œ s 1 s 1 s 1 can mimick all transitions of of s 2 s 2 s 2 ” 78 / 444

  59. Stutter bisimulation stutter5.4-def-stutter-bis Let T = ( S , Act , β†’ , S 0 , AP , L ) T = ( S , Act , β†’ , S 0 , AP , L ) T = ( S , Act , β†’ , S 0 , AP , L ) be a TS, possibly with terminal states. T R A stutter bisimulation for T T is a binary relation R R ( s 1 , s 2 ) ∈ R on S S S s.t. for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : L ( s 1 ) = L ( s 2 ) (1) labeling condition: L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) (2) simulation condition up to stuttering β€œ s 2 s 2 s 2 can mimick all transitions of of s 1 s 1 s 1 ” (3) simulation condition up to stuttering β€œ s 1 s 1 s 1 can mimick all transitions of of s 2 s 2 s 2 ” 79 / 444

  60. Simulation condition stutter5.4-def-stutter-bis A stutter bisimulation for T T T is a binary relation R R R on S S s.t. for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : ( s 1 , s 2 ) ∈ R S . . . . . . . . . . . . . . . . . . (2) simulation condition up to stuttering s 1 - R R - s 2 R s 1 s 2 s 1 s 2 s β€² s β€² s β€² 1 1 1 80 / 444

  61. Simulation condition stutter5.4-def-stutter-bis A stutter bisimulation for T T T is a binary relation R R R on S S s.t. for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : ( s 1 , s 2 ) ∈ R S . . . . . . . . . . . . . . . . . . (2) simulation condition up to stuttering s 1 - R R R - s 2 s 1 s 2 s 1 s 2 s β€² s β€² s β€² 1 1 1 with ( s β€² ( s β€² ( s β€² 1 , s 2 ) / 1 , s 2 ) / 1 , s 2 ) / ∈ R ∈ R ∈ R 81 / 444

  62. Simulation condition stutter5.4-def-stutter-bis A stutter bisimulation for T T T is a binary relation R R R on S S s.t. for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : S . . . . . . . . . . . . . . . . . . (2) simulation condition up to stuttering s 1 - R R R - s 2 s 1 - R R - s 2 R s 1 s 2 s 1 s 2 s 1 s 2 s 1 s 2 can be u 1 u 1 u 1 completed to s β€² s β€² s β€² . . . 1 1 1 . . . . . . u n u n u n with ( s β€² ( s β€² ( s β€² 1 , s 2 ) / 1 , s 2 ) / 1 , s 2 ) / ∈ R ∈ R ∈ R s β€² s β€² s β€² s β€² s β€² s β€² - R R R - 1 2 1 1 2 2 82 / 444

  63. Simulation condition stutter5.4-def-stutter-bis A stutter bisimulation for T T T is a binary relation R R R on S S s.t. for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : S . . . . . . . . . . . . . . . . . . (2) simulation condition up to stuttering s 1 - R R R - s 2 s 1 - R R - s 2 R s 1 s 2 s 1 s 2 s 1 s 2 s 1 s 2 can be u 1 u 1 u 1 completed to s β€² s β€² s β€² . . . 1 1 1 . . . s 1 - R - u i s 1 - R - u i s 1 - R - u i . . . u n u n u n with ( s β€² ( s β€² ( s β€² 1 , s 2 ) / 1 , s 2 ) / 1 , s 2 ) / ∈ R ∈ R ∈ R s β€² s β€² s β€² s β€² s β€² s β€² - R R R - 1 2 1 1 2 2 83 / 444

  64. Stutter bisimulation for a TS stutter5.4-stbis Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T T is a binary relation R R R on S S S such that for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : (1) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) s 1 β†’ s β€² ( s β€² for each transition s 1 β†’ s β€² s 1 β†’ s β€² 1 with ( s β€² ( s β€² 1 , s 2 ) / ∈ R (2) 1 , s 2 ) / 1 , s 2 ) / ∈ R ∈ R 1 1 s 2 u 1 u 2 . . . u n s β€² there exists a path fragment s 2 u 1 u 2 . . . u n s β€² s 2 u 1 u 2 . . . u n s β€² 2 2 2 . . . s.t. . . . . . . (3) . . . . . . . . . 84 / 444

  65. Stutter bisimulation for a TS stutter5.4-stbis Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T T is a binary relation R R R on S S S such that for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : (1) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) s 1 β†’ s β€² ( s β€² for each transition s 1 β†’ s β€² s 1 β†’ s β€² 1 with ( s β€² ( s β€² 1 , s 2 ) / ∈ R (2) 1 , s 2 ) / 1 , s 2 ) / ∈ R ∈ R 1 1 s 2 u 1 u 2 . . . u n s β€² there exists a path fragment s 2 u 1 u 2 . . . u n s β€² s 2 u 1 u 2 . . . u n s β€² 2 2 2 n β‰₯ 0 ( s 1 , u i ) ∈ R 1 ≀ i ≀ n s.t. n β‰₯ 0 n β‰₯ 0 and ( s 1 , u i ) ∈ R ( s 1 , u i ) ∈ R for 1 ≀ i ≀ n 1 ≀ i ≀ n (3) . . . . . . . . . 85 / 444

  66. Stutter bisimulation for a TS stutter5.4-stbis Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T T is a binary relation R R R on S S S such that for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : (1) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) s 1 β†’ s β€² ( s β€² for each transition s 1 β†’ s β€² s 1 β†’ s β€² 1 with ( s β€² ( s β€² 1 , s 2 ) / ∈ R (2) 1 , s 2 ) / 1 , s 2 ) / ∈ R ∈ R 1 1 s 2 u 1 u 2 . . . u n s β€² there exists a path fragment s 2 u 1 u 2 . . . u n s β€² s 2 u 1 u 2 . . . u n s β€² 2 2 2 n β‰₯ 0 ( s 1 , u i ) ∈ R 1 ≀ i ≀ n s.t. n β‰₯ 0 n β‰₯ 0 and ( s 1 , u i ) ∈ R ( s 1 , u i ) ∈ R for 1 ≀ i ≀ n 1 ≀ i ≀ n (3) symmetric condition 86 / 444

  67. Stutter bisimulation for a TS stutter5.4-stbis Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T T is a binary relation R R R on S S S such that for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : (1) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) L ( s 1 ) = L ( s 2 ) s 1 β†’ s β€² ( s β€² for each transition s 1 β†’ s β€² s 1 β†’ s β€² 1 with ( s β€² ( s β€² 1 , s 2 ) / ∈ R (2) 1 , s 2 ) / 1 , s 2 ) / ∈ R ∈ R 1 1 s 2 u 1 u 2 . . . u n s β€² there exists a path fragment s 2 u 1 u 2 . . . u n s β€² s 2 u 1 u 2 . . . u n s β€² 2 2 2 n β‰₯ 0 ( s 1 , u i ) ∈ R 1 ≀ i ≀ n s.t. n β‰₯ 0 n β‰₯ 0 and ( s 1 , u i ) ∈ R ( s 1 , u i ) ∈ R for 1 ≀ i ≀ n 1 ≀ i ≀ n for each transition s 2 β†’ s β€² s 2 β†’ s β€² s 2 β†’ s β€² 2 with ( s 1 , s β€² ( s 1 , s β€² ( s 1 , s β€² (3) 2 ) / 2 ) / 2 ) / ∈ R ∈ R ∈ R 2 2 there exists a path fragment s 1 v 1 v 2 . . . v n s β€² s 1 v 1 v 2 . . . v n s β€² s 1 v 1 v 2 . . . v n s β€² 1 1 1 n β‰₯ 0 ( v i , s 2 ) ∈ R 1 ≀ i ≀ n s.t. n β‰₯ 0 n β‰₯ 0 and ( v i , s 2 ) ∈ R ( v i , s 2 ) ∈ R for 1 ≀ i ≀ n 1 ≀ i ≀ n 87 / 444

  68. β‰ˆ T Stutter bisimulation equivalence β‰ˆ T β‰ˆ T stutter5.4-def-approx 88 / 444

  69. β‰ˆ T Stutter bisimulation equivalence β‰ˆ T β‰ˆ T stutter5.4-def-approx Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T is a binary relation R T R R on S S S such that for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : (1) labeling condition (2) and (3) mutual simulation condition 89 / 444

  70. β‰ˆ T Stutter bisimulation equivalence β‰ˆ T β‰ˆ T stutter5.4-def-approx Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T T is a binary relation R R R on S S S such that for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : (1) labeling condition (2) and (3) mutual simulation condition stutter bisimulation equivalence β‰ˆ T β‰ˆ T β‰ˆ T : 90 / 444

  71. β‰ˆ T Stutter bisimulation equivalence β‰ˆ T β‰ˆ T stutter5.4-def-approx Let T T T be a transition system wih state space S S S . A stutter bisimulation for T T T is a binary relation R R R on S S S such that for all ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R : ( s 1 , s 2 ) ∈ R (1) labeling condition (2) and (3) mutual simulation condition stutter bisimulation equivalence β‰ˆ T β‰ˆ T β‰ˆ T : s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 iff there exists a stutter bisimulation R R R for T T T s.t. ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R 91 / 444

  72. β‰ˆ T β‰ˆ T β‰ˆ T is an equivalence stutter5.4-10 92 / 444

  73. β‰ˆ T β‰ˆ T β‰ˆ T is an equivalence stutter5.4-10 symmetry: if s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 then s 2 β‰ˆ T s 1 s 2 β‰ˆ T s 1 s 2 β‰ˆ T s 1 93 / 444

  74. β‰ˆ T β‰ˆ T β‰ˆ T is an equivalence stutter5.4-10 s 1 β‰ˆ T s 2 s 2 β‰ˆ T s 1 symmetry: if s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 then s 2 β‰ˆ T s 1 s 2 β‰ˆ T s 1 proof: R ( s 1 , s 2 ) ∈ R if R R is a stutter bisimulation with ( s 1 , s 2 ) ∈ R ( s 1 , s 2 ) ∈ R then R βˆ’ 1 = R βˆ’ 1 = R βˆ’ 1 = οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ ( t 2 , t 1 ) : ( t 1 , t 2 ) ∈ R ( t 2 , t 1 ) : ( t 1 , t 2 ) ∈ R ( t 2 , t 1 ) : ( t 1 , t 2 ) ∈ R is a stutter bisimulation that contains ( s 2 , s 1 ) ( s 2 , s 1 ) ( s 2 , s 1 ). 94 / 444

  75. β‰ˆ T β‰ˆ T β‰ˆ T is an equivalence stutter5.4-10 symmetry: if s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 then s 2 β‰ˆ T s 1 s 2 β‰ˆ T s 1 s 2 β‰ˆ T s 1 s β‰ˆ T s reflexivity: s β‰ˆ T s s β‰ˆ T s for all states s s s 95 / 444

  76. β‰ˆ T β‰ˆ T β‰ˆ T is an equivalence stutter5.4-10 symmetry: if s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 then s 2 β‰ˆ T s 1 s 2 β‰ˆ T s 1 s 2 β‰ˆ T s 1 s β‰ˆ T s reflexivity: s β‰ˆ T s s β‰ˆ T s for all states s s s proof: οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ R = ( s , s ) : s ∈ S R = R = ( s , s ) : s ∈ S ( s , s ) : s ∈ S is a stutter bisimulation 96 / 444

  77. β‰ˆ T β‰ˆ T β‰ˆ T is an equivalence stutter5.4-10 symmetry: if s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 then s 2 β‰ˆ T s 1 s 2 β‰ˆ T s 1 s 2 β‰ˆ T s 1 s β‰ˆ T s reflexivity: s β‰ˆ T s s β‰ˆ T s for all states s s s s 1 β‰ˆ T s 2 s 2 β‰ˆ T s 3 s 1 β‰ˆ T s 3 transitivity: s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 and s 2 β‰ˆ T s 3 s 2 β‰ˆ T s 3 implies s 1 β‰ˆ T s 3 s 1 β‰ˆ T s 3 97 / 444

  78. β‰ˆ T β‰ˆ T β‰ˆ T is an equivalence stutter5.4-10 symmetry: if s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 then s 2 β‰ˆ T s 1 s 2 β‰ˆ T s 1 s 2 β‰ˆ T s 1 s β‰ˆ T s reflexivity: s β‰ˆ T s s β‰ˆ T s for all states s s s s 1 β‰ˆ T s 2 s 2 β‰ˆ T s 3 s 1 β‰ˆ T s 3 transitivity: s 1 β‰ˆ T s 2 s 1 β‰ˆ T s 2 and s 2 β‰ˆ T s 3 s 2 β‰ˆ T s 3 implies s 1 β‰ˆ T s 3 s 1 β‰ˆ T s 3 Proof: Let R 1 , 2 R 1 , 2 R 1 , 2 and R 2 , 3 R 2 , 3 R 2 , 3 be stutter bisimulations s.t. ( s 1 , s 2 ) ∈ R 1 , 2 , ( s 2 , s 3 ) ∈ R 2 , 3 ( s 1 , s 2 ) ∈ R 1 , 2 , ( s 2 , s 3 ) ∈ R 2 , 3 ( s 1 , s 2 ) ∈ R 1 , 2 , ( s 2 , s 3 ) ∈ R 2 , 3 R = R 1 , 2 β—¦ R 2 , 3 Show that R = R 1 , 2 β—¦ R 2 , 3 R = R 1 , 2 β—¦ R 2 , 3 is a stutter bisimulation. 98 / 444

  79. s 1 s 1 s 1 R 1 , 2 s 2 s 2 s 2 R 2 , 3 s 3 s 3 s 3 R 1 , 2 R 1 , 2 R 2 , 3 R 2 , 3 s β€² s β€² s β€² 1 1 1 99 / 444

  80. s 1 s 1 s 1 R 1 , 2 s 2 s 2 s 2 R 2 , 3 s 3 s 3 s 3 R 1 , 2 R 1 , 2 R 2 , 3 R 2 , 3 u 1 u 1 u 1 . . . . . . . . . u j βˆ’ 1 u j βˆ’ 1 u j βˆ’ 1 u j u j u j . . . . . . . . . u k βˆ’ 1 u k βˆ’ 1 u k βˆ’ 1 u k u k u k . . . . . . . . . u m u m u m s β€² s β€² s β€² s β€² s β€² s β€² R 1 , 2 R 1 , 2 R 1 , 2 1 2 1 1 2 2 100 / 444

Recommend


More recommend