overview
play

Overview Scope of ACADO Toolkit An Optimal Control Tutorial Example - PowerPoint PPT Presentation

ACADO T OOLKIT - A UTOMATIC C ONTROL AND D YNAMIC O PTIMIZATION Moritz Diehl, Boris Houska, Hans Joachim Ferreau Optimization in Engineering Center (OPTEC) K. U. Leuven ACADO Toolkit - Automatic Control and Dynamic Optimization p. 1/24


  1. ACADO T OOLKIT - A UTOMATIC C ONTROL AND D YNAMIC O PTIMIZATION Moritz Diehl, Boris Houska, Hans Joachim Ferreau Optimization in Engineering Center (OPTEC) K. U. Leuven ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 1/24

  2. Overview • Scope of ACADO Toolkit • An Optimal Control Tutorial Example • Algorithms and Modules in ACADO • Code Generation • Outlook ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 2/24

  3. Motivation: Optimal Control and En- gineering Applications Optimal Control Applications in OPTEC: • Optimal Robot Control, Kite Control, Solar Power Plants, Bio-chemical reactions... ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 3/24

  4. Motivation: Optimal Control and En- gineering Applications Optimal Control Applications in OPTEC: • Optimal Robot Control, Kite Control, Solar Power Plants, Bio-chemical reactions... Need to solve optimal control problems: � T minimize 0 L ( τ, y ( τ ) , u ( τ ) , p ) d τ + M ( y ( T ) , p ) y ( · ) ,u ( · ) ,p,T subject to: ∀ t ∈ [0 , T ] : 0 = f ( t, ˙ y ( t ) , y ( t ) , u ( t ) , p ) 0 = r ( y (0) , y ( T ) , p ) ∀ t ∈ [0 , T ] : 0 s ( t, y ( t ) , u ( t ) , p ) ≥ ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 3/24

  5. What is ACADO Toolkit? ACADO Toolkit: • A utomatic C ontrol A nd D ynamic O ptimization • great variety of numerical optimization algorithms • open framework for users and developers ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 4/24

  6. What is ACADO Toolkit? ACADO Toolkit: • A utomatic C ontrol A nd D ynamic O ptimization • great variety of numerical optimization algorithms • open framework for users and developers Key Properties of ACADO Toolkit • Open Source (LGPL) www.acadotoolkit.org • user interfaces close to mathematical syntax • Code extensibility: use C++ capabilities • Self-containedness: only need C++ compiler ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 4/24

  7. Implemented Problem Classes in ACADO Toolkit • Optimal control of dynamic systems (ODE, DAE) ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 5/24

  8. Implemented Problem Classes in ACADO Toolkit • Optimal control of dynamic systems (ODE, DAE) • Multi-objective optimization (joint work with Filip Logist) ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 5/24

  9. Implemented Problem Classes in ACADO Toolkit • Optimal control of dynamic systems (ODE, DAE) • Multi-objective optimization (joint work with Filip Logist) • State and parameter estimation ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 5/24

  10. Implemented Problem Classes in ACADO Toolkit • Optimal control of dynamic systems (ODE, DAE) • Multi-objective optimization (joint work with Filip Logist) • State and parameter estimation • Feedback control (NMPC) and closed loop simulation tools ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 5/24

  11. Implemented Problem Classes in ACADO Toolkit • Optimal control of dynamic systems (ODE, DAE) • Multi-objective optimization (joint work with Filip Logist) • State and parameter estimation • Feedback control (NMPC) and closed loop simulation tools • Robust optimal control ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 5/24

  12. Implemented Problem Classes in ACADO Toolkit • Optimal control of dynamic systems (ODE, DAE) • Multi-objective optimization (joint work with Filip Logist) • State and parameter estimation • Feedback control (NMPC) and closed loop simulation tools • Robust optimal control • Real-Time MPC and Code Export ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 5/24

  13. Overview • Scope of ACADO Toolkit • An Optimal Control Tutorial Example • Algorithms and Modules in ACADO • Code Generation • Outlook ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 6/24

  14. Tutorial Example: Time Optimal Con- trol of a Rocket Mathematical Formulation: T minimize s ( · ) ,v ( · ) ,m ( · ) ,u ( · ) ,T subject to s ( t ) ˙ = v ( t ) u ( t ) − 0 . 2 v ( t )2 v ( t ) ˙ = m ( t ) − 0 . 01 u ( t ) 2 m ( t ) ˙ = s (0) = 0 s ( T ) = 10 v (0) = 0 v ( T ) = 0 m (0) = 1 − 0 . 1 v ( t ) ≤ 1 . 7 ≤ − 1 . 1 u ( t ) ≤ 1 . 1 ≤ 5 T ≤ 15 ≤ ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 7/24

  15. Tutorial Example: Time Optimal Con- trol of a Rocket DifferentialState s,v,m; Mathematical Formulation: Control u; Parameter T; DifferentialEquation f( 0.0, T ); T minimize s ( · ) ,v ( · ) ,m ( · ) ,u ( · ) ,T OCP ocp( 0.0, T ); ocp.minimizeMayerTerm( T ); subject to f « dot(s) == v; s ( t ) ˙ = v ( t ) f « dot(v) == (u-0.2*v*v)/m; f « dot(m) == -0.01*u*u; u ( t ) − 0 . 2 v ( t )2 v ( t ) ˙ = ocp.subjectTo( f ); m ( t ) − 0 . 01 u ( t ) 2 m ( t ) ˙ = ocp.subjectTo( AT_START, s == 0.0 ); ocp.subjectTo( AT_START, v == 0.0 ); s (0) = 0 s ( T ) = 10 ocp.subjectTo( AT_START, m == 1.0 ); ocp.subjectTo( AT_END , s == 10.0 ); v (0) = 0 v ( T ) = 0 ocp.subjectTo( AT_END , v == 0.0 ); m (0) = 1 ocp.subjectTo( -0.1 <= v <= 1.7 ); ocp.subjectTo( -1.1 <= u <= 1.1 ); − 0 . 1 v ( t ) ≤ 1 . 7 ≤ ocp.subjectTo( 5.0 <= T <= 15.0 ); − 1 . 1 u ( t ) ≤ 1 . 1 ≤ OptimizationAlgorithm algorithm(ocp); algorithm.solve(); 5 T ≤ 15 ≤ ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 7/24

  16. Optimization Results ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 8/24

  17. Overview • Scope of ACADO Toolkit • An Optimal Control Tutorial Example • Algorithms and Modules in ACADO • Code Generation • Outlook ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 9/24

  18. The Power of Symbolic Functions Symbolic Functions allow: • Dependency/Sparsity Detection • Automatic Differentiation • Symbolic Differentiation • Convexity Detection • Code Optimization • C-code Generation ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 10/24

  19. The Power of Symbolic Functions Symbolic Functions allow: Example 1: • Dependency/Sparsity DifferentialState x; Detection IntermediateState z; TIME t; • Automatic Differentiation Function f; • Symbolic Differentiation z = 0.5*x + 1.0 ; f « exp(x) + t ; • Convexity Detection f « exp(z+exp(z)) ; • Code Optimization if( f.isConvex() == YES ) printf("f is convex. "); • C-code Generation ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 10/24

  20. Symbolic Functions Example 2 (code optimization): • Matrix A(3,3); Vector b(3); DifferentialState x(3); Function f; A.setZero(); A(0,0) = 1.0; A(1,1) = 2.0; A(2,2) = 3.0; b(0) = 1.0; b(1) = 1.0; b(2) = 1.0; f « A*x + b; • expect 9 multiplications 9 additions to evaluate f . • ACADO needs 3 multiplications and 3 additions. ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 11/24

  21. Integration Algorithms DAE simulation and sensitivity generation: • several Runge Kutta and a BDF integrator. • first and second order automatic differentiation. ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 12/24

  22. Integration Algorithms DAE simulation and sensitivity generation: • several Runge Kutta and a BDF integrator. • first and second order automatic differentiation. • The BDF routine solves fully implicit index 1 DAE’s: ∀ t ∈ [0 , T ] : F ( t, ˙ y ( t ) , y ( t ) , u ( t ) , p ) = 0 . ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 12/24

  23. Integration Algorithms DAE simulation and sensitivity generation: • several Runge Kutta and a BDF integrator. • first and second order automatic differentiation. • The BDF routine solves fully implicit index 1 DAE’s: ∀ t ∈ [0 , T ] : F ( t, ˙ y ( t ) , y ( t ) , u ( t ) , p ) = 0 . • Continous output of trajectories and sensitivities. • Integrators are also available as stand alone package. • Sparse LA solvers can be linked. ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 12/24

  24. Nonlinear Optimization Algorithms Nonlinear Optimal Control Problem • ACADO solves problem of the general form: � T minimize 0 L ( τ, y ( τ ) , u ( τ ) , p ) d τ + M ( y ( T ) , p ) y ( · ) ,u ( · ) ,p,T subject to: ∀ t ∈ [0 , T ] : 0 = f ( t, ˙ y ( t ) , y ( t ) , u ( t ) , p ) 0 = r ( y (0) , y ( T ) , p ) ∀ t ∈ [0 , T ] : 0 s ( t, y ( t ) , u ( t ) , p ) ≥ ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 13/24

  25. Nonlinear Optimization Algorithms Implemented Solution Methods • Discretization: Single- or Multiple Shooting • NLP solution: several SQP type methods e.g. with • BFGS Hessian Approximations or • Gauss-Newton Hessian Approximations • Globalization: based on line search • QP solution: active set methods ( qpOASES ) ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 14/24

  26. Nonlinear Optimization Algorithms Implemented Solution Methods • Discretization: Single- or Multiple Shooting • NLP solution: several SQP type methods e.g. with • BFGS Hessian Approximations or • Gauss-Newton Hessian Approximations • Globalization: based on line search • QP solution: active set methods ( qpOASES ) Latest Feature: • Automatic Code Export for NMPC ACADO Toolkit - Automatic Control and Dynamic Optimization – p. 14/24

Recommend


More recommend