outline
play

Outline 1. Introduction to PMFs 2. Reheating of the CMB photon 3. - PowerPoint PPT Presentation

New constraints on small-scale primordial magnetic fields from Magnetic Reheating Shohei Saga (YITP, Kyoto University) Based on S.S, H.Tashiro, and S.Yokoyama [MNRAS 475 L 52(2018)] S.S, A.Ota, H.Tashiro, and S.Yokoyama in prep. Outline 1.


  1. New constraints on small-scale primordial magnetic fields from Magnetic Reheating Shohei Saga (YITP, Kyoto University) Based on S.S, H.Tashiro, and S.Yokoyama [MNRAS 475 L 52(2018)] S.S, A.Ota, H.Tashiro, and S.Yokoyama in prep.

  2. Outline 1. Introduction to PMFs 2. Reheating of the CMB photon 3. Magnetic Reheating 4. Summary

  3. 3 Outline 1. Introduction to PMFs 2. Reheating of the CMB photon 3. Magnetic Reheating 4. Summary

  4. 4 1. Introduction to PMFs Primordial Magnetic Fields ( PMFs) generated by cosmological phenomena in the early universe Why we consider PMFs? Observed (large-scale) magnetic fields • Galaxy(~ kpc) ~ 10 -5 - 10 -6 Gauss • Cluster(~ Mpc) ~ 10 -6 Gauss • Intergalactic(void) > 10 -16 - 10 -21 Gauss Setting seed fields in the early universe and amplifying Cosmological constraint on PMFs • CMB anisotropy • CMB distortion • Big Bang Nucleosynthesis (BBN)

  5. 5 1.1 Example(1) CMB anisotropy PMFs generate CMB temperature and polarization anisotropies. 10 6 TT TT TT TT TT TT 10 3 µ K 2 ⇤ ⇥ 10 1 ` ( ` + 1) C ` / 2 ⇡ 10 − 1 Primary 10 − 3 Scalar magnetic n B = -2.9 Vector magnetic B 1Mpc = 4.5 nGauss Passive tensor magnetic 10 − 6 10 1 10 2 10 3 Planck 2015 [1502.01549] ` A. Lewis [astro-ph/0406096] P B ( k ) ∝ k n B ~ O(nGauss)

  6. 6 1.2 Example(2) CMB distortion J. Ganc and M. S. Sloth [1404.5957] Double Compton era K. K. Kunze and E. Komatsu [1309.7994] Double Compton scattering e − + γ ← → e − + γ + γ ~ 2.0 × 10 6 μ era Chemical potential Compton scattering # of CMB photon fix Bose-Einstein distribution ~ 4.0 × 10 4 y-parameter y era Non-equilibrium state Decaying of PMFs generates μ and y distortion z è From the observation of COBE, B < O (nG) .

  7. 7 1.3 Constraint on PMFs In the cosmological observations, n Gauss PMFs on Large Scale ( ≳ Mpc) PMFs on much smaller scales ?

  8. 8 Outline 1. Introduction to PMFs 2. Reheating of the CMB photon 3. Magnetic Reheating 4. Summary

  9. 9 2. Reheating of the CMB photon Before μ era, i.e., 2.0 × 10 6 ≲ 1 + z , Double Compton era Compton scattering Double Compton scattering Double Compton scattering is Planck distribution efficient. ~ 2.0 × 10 6 • Thermal equilibrium μ era • Planck distribution Compton scattering # of CMB photon fix Bose-Einstein distribution An energy injection increases # of CMB photons ~ 4.0 × 10 4 while # of baryons does not change. y era Non-equilibrium state The baryon-photon number ratio η decreases. η = n b z n γ

  10. 10 2.1 Baryon-photon ratio η Baryon-photon ratio is independently constrained by BBN and CMB. R.H.Cyburt, B.D.Fields, and K.A.Olive [astro-ph/0503065] η determines è photon dissociation rate, reaction rate, and so on. è abundance of light element generated in BBN era Constrained value by BBN η BBN = (6 . 19 ± 0 . 21) × 10 − 10 K.M.Nollet and G.Steigman [1312.5725] η = n b n γ

  11. 11 2.2 Baryon-photon ratio η Baryon-photon ratio is determined independently by BBN and CMB. From CMB observations, • Temperature of CMB photons: T CMB • Density of baryons: Ω b0 We can directly determine η Constrained value by CMB (after the onset of the μ -era) η CMB = (6 . 11 ± 0 . 08) × 10 − 10 Planck 2013 [1303.5076]

  12. 12 2.3 Baryon-photon ratio η η BBN = (6 . 19 ± 0 . 21) × 10 − 10 Energy injection η CMB = (6 . 11 ± 0 . 08) × 10 − 10 η Standard model @BBN @CMB z

  13. 13 Outline 1. Introduction to PMFs 2. Reheating of the CMB photon 3. Magnetic Reheating 4. Summary

  14. 14 3 Magnetic Reheating Energy injection source = Diffusion of PMFs à increasing n γ (i.e., reheating) MHD mode analysis Example: Fast-magnetosonic mode k D ( z ) ≈ 7 . 44 × 10 − 6 (1 + z ) 3 / 2 Mpc − 1 ∼ k Silk ( z ) Spectrum of PMFs: Reheating photons k Large scale ← → Small scale k D k D

  15. 15 3.1 Delta-function type P B ( k ) = B 2 delta δ D (ln ( k/k p )) 10 4 10 3 B delta [nG] M.Kawasaki and M.Kusakabe [1204.6164] K.Jedamzik et al. [astro-ph/9911100] 10 2 Magnetic reheating BBN CMB distortion 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 k p [Mpc -1 ]

  16. 16 3.2 Power ‐ law type (Upper bound) ✓ k ◆ n B +3 P B ( k ) = B 2 k 0 = 1 Mpc − 1 k 0 10 5 Planck 2015 [1502.01549] 10 0 10 -5 B [nG] 10 -10 10 -15 10 -20 Fast mode 10 -25 Alfven mode Planck constraint 10 -30 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 Scale-invariant n B

  17. 17 3.3 Anisotropic reheating(Preliminary) ✓ k ◆ n B +3 k 0 = 1 Mpc − 1 P B ( k ) = B 2 k 0 10 5 Preliminary 10 0 10 -5 B [nG] 10 -10 Anisotropic reheating 10 -15 z ini = 10 14 Uniform reheating (Fast) 10 -20 Uniform reheating (Alfven) Planck constraint 10 -25 -3.0 -2.0 -1.0 0.0 1.0 2.0 n B Scale-invariant

  18. 18 Outline 1. Introduction to PMFs 2. Reheating of the CMB photon 3. Magnetic Reheating 4. Summary

  19. 19 4. Summary Magnetic Reheating is the novel mechanism to explore small-scale PMFs . In the case of power-law type spectrum, bluer tilt is strongly constrained: for example, B ≲ 10 − 17 nG for n B = 1.0 10 − 23 nG for n B = 2.0 ó Planck ~ O(1.0 nG) !!! + Magnetic anisotropic reheating?

Recommend


More recommend