outline
play

Outline Overview of recent work improving performance in most - PowerPoint PPT Presentation

Evaluation of Potential Enhancements to Version 6 Cloud Clearing and Profile Retrieval William J. Blackwell and Michael Pieper AIRS Science Team Meeting April 17, 2008 This work was sponsored by the National Oceanic and Atmospheric


  1. Evaluation of Potential Enhancements to Version 6 Cloud Clearing and Profile Retrieval William J. Blackwell and Michael Pieper AIRS Science Team Meeting April 17, 2008 This work was sponsored by the National Oceanic and Atmospheric Administration under contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government. MIT Lincoln Laboratory AIRS ST Apr08: 1 WJB 6/2/08

  2. Outline • Overview of recent work – improving performance in most difficult cases: – Land – Elevated surface terrain – Near polar regions • SCC+NN performance comparisons with AIRS L2 Version 5 algorithm (versus ECMWF and Radiosondes) • IASI versus AIRS: SCC/NN temperature retrieval performance – Importance of high SNR in SW spectral region • Possible Version 6 enhancements (regression first guess, etc.) • Future Work MIT Lincoln Laboratory AIRS ST Apr08: 2 WJB 6/2/08

  3. Retrieval Performance Validation with AIRS/AMSU Case 1: ECMWF atmospheric fields • >1,000,000 co-located AIRS/AMSU/ECMWF observations from ~100 days: – Every fourth day from December 1, 2004 through January 31, 2006 – Used for training • ~250,000 profiles set aside for validation and testing sets Case 2: Radiosonde data • ~50,000 quality-controlled radiosondes from NOAA FSL global database co-located with AIRS/AMSU observations – Used for validation Global: Cloudy, Land & Ocean, Day & Night MIT Lincoln Laboratory AIRS ST Apr08: 3 WJB 6/2/08

  4. SCC/NN versus AIRS L2 (Version 5) Descending, Ocean, Edge-of-Scan, Spring05 ~1km vertical layers Latitudes within ±60° ECMWF is “truth” AIRS+AMSU MIT Lincoln Laboratory AIRS ST Apr08: 4 WJB 6/2/08

  5. SCC/NN versus AIRS L2 (Version 5) Descending, Land, Edge-of-Scan, Spring05 ~1km vertical layers Latitudes within ±60° ECMWF is “truth” AIRS+AMSU MIT Lincoln Laboratory AIRS ST Apr08: 5 WJB 6/2/08

  6. Descending, Land, Edge-of-Scan, Spring05 Versus Radiosondes ~1km vertical layers 910 radiosondes are “truth” Latitudes within ±60° AIRS+AMSU MIT Lincoln Laboratory AIRS ST Apr08: 6 WJB 6/2/08

  7. IASI/ECMWF/SARTA Matchup Database • Global database spanning May07-Dec07 • Approximately 100,000 fields-of-regard – IASI observations (2x2) – ECMWF atmospheric fields – Radiosondes (available for some FOR’s) – IASI clear-air spectra calculated with SARTA v1.05 • Database stratified by surface type, latitude, solar zenith angle, sensor scan angle, surface pressure MIT Lincoln Laboratory AIRS ST Apr08: 7 WJB 6/2/08

  8. RMS IASI Cloudy Obs - Clear Calcs (i.e., Before Cloud Clearing) Window 15-micron 4-micron Opaque 4-micron RMS IASI Obs-Calcs (K) Water vapor SCC RMS with AIRS Ocean MIT Lincoln Laboratory AIRS ST Apr08: 8 WJB 6/2/08

  9. Correlation of “IASI OBS” and “IASI OBS-CALCS” Eigenvectors Correlation decreases as atmospheric signal is removed Eigenvectors almost identical Indicates channels responsive to clouds Ocean MIT Lincoln Laboratory AIRS ST Apr08: 9 WJB 6/2/08

  10. IASI Temperature Retrievals Over Ocean ~1km vertical layers Near-nadir scan angles, ±60° Latitude ECMWF is “truth” IASI+AMSU MIT Lincoln Laboratory AIRS ST Apr08: 10 WJB 6/2/08

  11. AIRS versus IASI: Ocean ~1km vertical layers Near-nadir scan angles, ±60° Latitude ECMWF is “truth” IASI+AMSU MIT Lincoln Laboratory AIRS ST Apr08: 11 WJB 6/2/08

  12. IASI Temperature Retrievals Over Land ~1km vertical layers Near-nadir scan angles, ±60° Latitude ECMWF is “truth” IASI+AMSU MIT Lincoln Laboratory AIRS ST Apr08: 12 WJB 6/2/08

  13. AIRS versus IASI: Land AIRS is significantly better near the surface ~1km vertical layers Near-nadir scan angles, ±60° Latitude ECMWF is “truth” IASI+AMSU MIT Lincoln Laboratory AIRS ST Apr08: 13 WJB 6/2/08

  14. AIRS versus IASI NEdT MIT Lincoln Laboratory AIRS ST Apr08: 14 WJB 6/2/08

  15. AIRS Retrieval Degradation After Adding Noise to Shortwave Channels ~1km vertical layers Near-nadir scan angles, ±60° Latitude ECMWF is “truth” IASI+AMSU MIT Lincoln Laboratory AIRS ST Apr08: 15 WJB 6/2/08

  16. Potential Advantages SCC/NN “First Guess” Could Offer v6 • Lower trend biases due to first guess – Coefficients sets are derived from several stratifications: Season, latitude, surface pressure, surface type, solar zenith angle • Higher yield/accuracy in critical areas – Land – Polar – Heavy clouds • Lower sensitivity to changing/degrading instrument properties – For example, preliminary analysis of AMSU ch4 degradation has minimal impact on SCC/NN products MIT Lincoln Laboratory AIRS ST Apr08: 16 WJB 6/2/08

  17. Steps in Version 5 and Version 5.12 (Courtesy Joel Susskind) MIT AMSU Retrieval ? X CR X NN Cloudy regression gives X microwave = X 0 X CR AMSU Retrieval using gives (now solve for T(p), only - not T s ) � � ? 0 , � 0 ,P c0 X 0 ˆ ˆ Determine using R i SCC R i ? 0 ˆ Determine from X reg R i X NN X reg AMSU retrieval using gives (now solve for T(p), only - not T s ) X 1 � � ? Determine using ˆ SCC X 1 R i1 ˆ R i Physical retrieval using and gives R i1 ˆ X 1 X PHYS AMSU retrieval using gives X test X PHYS determined from R i2 ˆ X PHYS Physical retrieval using gives R i2 X final ˆ Select or ? X NN X final X 0 Clouds, OLR determined from or X 0 X final Generate error estimates � X Do QC Steps Modified in Version 5.12 MIT Lincoln Laboratory AIRS ST Apr08: 17 WJB 6/2/08

  18. Future Work / Conclusions • Additional and more extensive performance assessments – Experiments to illuminate possible paths of integration with AIRS Level 2 algorithm (v6) – Match-ups with RAOB data • Algorithm optimizations, especially for IASI/CrIMSS – Improved handling of land, including elevated surface terrain and surface emissivity • Comprehensive performance assessments with ECMWF and Radiosondes continue to show encouraging results for SCC/NN • Potential enhancements to v6 include: Lower trend biases, higher yield/accuracy, less sensitivity to sensor degradation MIT Lincoln Laboratory AIRS ST Apr08: 18 WJB 6/2/08

  19. Backup Slides MIT Lincoln Laboratory AIRS ST Apr08: 19 WJB 6/2/08

  20. Algorithm Overview (Part I) • Temperature and moisture profile retrievals are produced in all cloud conditions • Cloud-cleared radiance estimates are produced for all 2378 AIRS channels • Retrieval is global: – All latitudes – Ocean and land – Day and night • Quality control has been implemented • IR-only option implemented • Very fast: Cloud-cleared radiances and retrieved profiles generated for one field of regard in ~1 msec using PC!! – Two-three orders of magnitude faster than current operational methods – One-two orders of magnitude faster than iterative, pseudochannel methods MIT Lincoln Laboratory AIRS ST Apr08: 20 WJB 6/2/08

  21. Algorithm Overview (Part II) • Algorithm is composed of linear and non-linear statistical operators – Projected principal components transform – Neural network estimation • Coefficients are derived empirically, off-line: – Co-location of sensor measurements with “truth” (Radiosondes, NWP, etc.) – Model-generated data – Data stratification is used for: Sensor scan angle Latitude Solar zenith angle Surface type Surface elevation MIT Lincoln Laboratory AIRS ST Apr08: 21 WJB 6/2/08

  22. Algorithm Block Diagram ~ ~ ~ ˆ R R P T Projected Stochastic Principal Cloud Components Clearing Transform MIT Lincoln Laboratory AIRS ST Apr08: 22 WJB 6/2/08

  23. Block Diagram of SCC Algorithm Δ -cloud 1 PC 2 T B ’s 1 Linear Linear × Operator A Operator B Quality control 1 PC Less N 3x3 AIRS Select/average cloudy Cloudy T B ’s FOV’s Test 5 microwave λ ’s 7 More Land fraction cloudy × Secant θ Linear Linear Operator D Operator C Cleared N AIRS T B ’s N = 2378 channels Cho and Staelin, Aug. 2006 MIT Lincoln Laboratory AIRS ST Apr08: 23 WJB 6/2/08

  24. SCC+NN Quality Control • Simple, linear function of estimated radiance correction for a set of channels • Framework allows for altitude-dependent quality flags • Yield versus accuracy trades can be easily performed – “Qual_Good” yields approximately 80% – “Qual_Best” yields approximately 30% MIT Lincoln Laboratory AIRS ST Apr08: 24 WJB 6/2/08

  25. Stochastic Cloud Clearing Quality Control Ocean, All latitudes MIT Lincoln Laboratory AIRS ST Apr08: 25 WJB 6/2/08

  26. SCC/NN versus AIRS L2 (Version 5) Descending, South Pole * , Edge-of-Scan, Spring ECMWF is “truth” ~1km vertical layers Quality is suspect AIRS+AMSU MIT Lincoln Laboratory AIRS ST Apr08: 26 * South Pole = Latitudes < -60° WJB 6/2/08

  27. IASI Eigenanalysis Predominantly cloud effects Atmospheric and sensor “noise” Ocean MIT Lincoln Laboratory AIRS ST Apr08: 27 WJB 6/2/08

  28. IASI “OBS” and “OBS-CALCS” Eigenvectors MIT Lincoln Laboratory AIRS ST Apr08: 28 WJB 6/2/08

  29. Stochastic Cloud Clearing of IASI 473 IASI channels were cleared Descending orbits within ±60° latitude, ocean ECMWF is “truth” MIT Lincoln Laboratory AIRS ST Apr08: 29 WJB 6/2/08

Recommend


More recommend